Interferenzen bei der Gammaspektrometrie

 γ -SPEKT/INTERF

Bearbeiter: G. Kanisch¹ H. Mundschenk²⁺ U.-K. Schkade³ H. Wershofen⁴

¹ Thünen-Institut für Fischereiökologie
² Bundesanstalt für Gewässerkunde
³ Bundesamt für Strahlenschutz
⁴ Physikalisch-Technische Bundesanstalt

Interferenzen bei der Gammaspektrometrie

1 Einleitung

Bei der Auswertung komplexer Impulshöhenspektren müssen die einzelnen Gammalinien dem jeweiligen Radionuklid anhand der Lage im Impulshöhenspektrum entsprechend ihrer Energien eindeutig zugeordnet werden. Die eindeutige Zuordnung von Spalt- und Aktivierungsprodukten kann durch andere Radionuklide mit identischen oder sehr ähnlichen Gammastrahlenenergien, sogenannte Störstrahler, insbesondere durch Glieder der natürlichen Zerfallsreihen erschwert werden.

Einige Radionuklide emittieren so nahe beieinander liegende Gammaenergien, dass deren Gammalinien im Impulshöhenspektrum nicht mehr aufgelöst werden können. In diesen Fällen müssen Korrektionen über andere, nicht interferierende Gammalinien erfolgen. Ist diese Vorgehensweise nicht möglich, müssen andere Verfahren, z. B. eine radiochemische Abtrennung, herangezogen werden.

2 Interferiende Gammalinien

In Tabelle 1 sind potentiell im Impulshöhenspektrum interferierende Gammalinien bei der Aktivitätsbestimmung ausgewählter Radionuklide in Umweltproben zusammengestellt.

Radionuklide, die in Umweltproben im Allgemeinen im radioaktiven Gleichgewicht auftreten, z. B. Mo-99/Tc-99m, Ru-106/Rh-106, werden in Spalte 1 stets als Mutter-/ Tochterpaar aufgeführt. Bei Radionuklidpaaren, bei denen a priori nicht das Vorliegen eines radioaktiven Gleichgewichtes angenommen werden darf, z. B. Zr-95/Nb-95, Ba-140/La-140, werden die Radionuklide getrennt angegeben.

Radionuklide, die bei der Aktivitätsbestimmung der in Spalte 1 genannten Radionuklide bzw. Radionuklidpaare stören können, sind in Spalte 5 aufgeführt. In der letzten Spalte ist das zum jeweiligen Störnuklid gehörende Mutternuklid genannt.

Anmerkung:

Der Stand aller kernphysikalischen Daten dieses Allgemeinen Kapitels ist Juni 2018. Für aktuelle Daten wird auf das Allgemeine Kapitel KERNDATEN dieser Messanleitungen verwiesen.

Tab. 1:Potentiell im Impulshöhenspektrum interferierende Gammalinien bei der
Aktivitätsbestimmung ausgewählter Radionuklide in Umweltproben

Radio- nuklid/ - paar	Εγ	ρ γ	t _r	Stör- nuklid	Eγ	Ργ	tr	Mutter des Stör- nuklids
	in keV		in d		in keV		in d	
Be-7	477,60	0,1044	53,22	Eu-154	478,27	0,224	3,14·10 ³	
Na-22	1274,58	0,9994	950,67	Eu-154	1274,43	0,349	3,14·10 ³	
Cr-51	320,08	0,0989	27,70	Nd-147	319,41	0,0199	10,99	
Mn-54	834,85	0,9998	312,19	Ac-228	835,70	0,017	5,12·10 ¹² *	Th-232
Co-57	122,06	0,8549	271.81	Se-75	121.12	0.1686	119.78	
	,	-,		Eu-152	121,78	0,2841	4,94·10 ³	
				Eu-154	, 123,07	0,404	3,14·10 ³	
	136,47	0,1071		TI-201	135,31	0,026	3,04	
				Se-75	136,00	0,577	119,78	
				Re-186	137,16	0,0942	3,719	
Co-58	810,76	0,9944	70,85	I-132	809,5	0,026	3,23*	Te-132
				Eu-156	811,77	0,097	15,19	
				I-132	812,0	0,055	3,23*	Te-132
Fe-59	1099,25	0,5651	44,49	_	_	_	_	
	1291,59	0,4323		I-132	1290,8	0,0113	0,0956	Te-132
Co-60	1173,23	0,9985	1925,2	I-132	1172,92	0,017	0,0956	Te-132
	1332,49	0,9998						
Se-75	121,12	0,1686	119,78	Eu-152	121,78	0,2841	4,94·10 ³	
				Co-57	122,06	0,8549	271,81	
				Eu-154	123,07	0,404	3,14·10 ³	
	136,00	0,577		TI-201	135,31	0,026	3,04	
				Co-57	136,47	0,1071	271,81	
				Re-186	137,16	0,0942	3,719	
	303,92	0,0131		Ba-133	302,85	0,1831	3,85·10 ³	
Zr-95	724,19	0,4427	64,03	Eu-156	723,47	0,054	15,19	
	756,73	0,5438		Ac-228	755,31	0,0103	5,12·10 ¹² *	Th-232
Zr-97/	743,36	0,9790	0,6979	Pa-234	742,8	0,0208	1,63·10 ¹² *	U-238
Nb-97m				Ag-110m	744,28	0,0471	249,78	
Mo-99/ Tc-99m	777,92	0,0428	2,748	Eu-152	778,90	0,1297	4,94·10 ³	
Ru-106/	621,90	0,0987	371,5	Ag-110m	620,36	0,0272	249,78	
Rh-106				I-132	621,2	0,016	3,23*	Te-132
				Eu-157	622,75	0,097	0,6325	
Ag-110m	620,36	0,0272	249,78	I-132	621,2	0,016	3,23*	Te-132
				Rh-106	621,90	0,0987	371,5*	Ru-106
	744,28	0,0471		Nb-97m	743,36	0,9790	0,6979*	Zr-97
	818,02	0,0733		Cs-136	818,51	0,997	13,16	
	00 - 55			Pa-234	819,20	0,019	1,63.10 ¹² *	U-238
	884,68	0,740		Pa-234	883,24	0,097	1,63.1012*	U-238
Sb-124	602,73	0,9778	60,21	Sb-127	603,9	0,0421	3,85	
Sb-125	176,31	0,0682	1007,5	Cs-136	176,60	0,100	13,16	
	427,87	0,2955		Pb-211	427,15	0,0181	7,95·10 ³ *	Ac-227
	463,37	0,1048		Ac-228	463,00	0,0445	5,12·10 ¹² *	Th-232
	635,95	0,1132		I-131	636,99	0,0712	8,023	

ISSN 1865-8725

Version März 2019

Messanleitungen für die "Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung"

Radio- nuklid/ - paar	Εγ	ρ γ	t _r	Stör- nuklid	Ε γ	Ργ	t,	Mutter des Stör-
-								nuklids
	in keV		in d		in keV		in d	
Sb-127	603,9	0,0421	3,85	Sb-124	602,73	0,9778	60,21	
				Ir-192	604,41	0,082	73,827	
				Cs-134	604,72	0,9763	754,0	
Te-129/ Te-129m	695,88	0,031	33,6*	Pr-144	696,51	0,0141	284,89*	Ce-144
I-131	636,99	0,0712	8,023	Sb-125	635,95	0,1132	1007,5	
I-131	722,91	0,0179		Eu-154	723,30	0,2005	3,14·10 ³	
Te-132/	228,33	0,8812	3,23*	Pa-234	227,25	0,058	1,63·10 ¹² *	U-238
I-132				Np-239	228,18	0,1132	2,356	
	621,20	0,016		Ag-110m	620,36	0,0272	249,78	
				Rh-106	621,90	0,0987	371,5*	Ru-106
	772,60	0,756		Ac-228	772,29	0,0152	5,12·10 ¹² *	Th-232
	809,50	0,026		Co-58	810,76	0,9944	70,85	
	812,00	0,055		Co-58	810,76	0,9944	70,85	
				Eu-156	811,77	0,097	15,19	
I-133	529,87	0,863	0,870	Nd-147	531,02	0,127	10,99	
Ba-133	302,85	0,1831	3,85·10 ³	Se-75	303,92	0,0131	119,78	
Cs-134	604,72	0,9763	754,0	Sb-127	603,9	0,0421	3,85	
				Ir-192	604,41	0,082	73,827	
	795,86	0,8547		Ac-228	794,94	0,0431	5,12·10 ¹² *	Th-232
				Pa-234	796,10	0,026	1,63·10 ¹² *	U-238
Cs-136	163,92	0,0339	13,16	Ba-140	162,66	0,0649	12,753	
				U-235	163,36	0,0508	2,57·10 ¹¹	
				Pm-151	163,58	0,0155	1,183	
	176,60	0,100		Sb-125	176,31	0,0682	1007,5	
	340,55	0,422		Pm-151	340,08	0,225	1,183	
	818,51	0,997		Ag-110m	818,02	0,0733	249,78	
				Pa-234	819,2	0,019	1,63.1012*	0-238
Ba-140	162,66	0,0649	12,753	U-235	163,36	0,0508	$2,57 \cdot 10^{11}$	
				Pm-151	163,58	0,0155	1,183	
				Cs-136	163,92	0,0339	13,16	
Ce-141	145,44	0,4829	32,50	Ra-223	144,27	0,0336	7,95·10 ³ *	Ac-227
Ce-143	293,27	0,428	1,377	Pa-234	293,79	0,030	1,63·10 ¹² *	U-238
Ce-144/ Pr-144	696,51	0,0141	284,89*	Te-129m	695,88	0,031	33,6*	Te-129
Nd-147	319,41	0,0199	10,99	Cr-51	320,08	0,0989	27,70	
	531,02	0,127		I-133	529,87	0,863	0,870	
Pm-151	104,84	0,035	1,183	Eu-155	105,31	0,211	1736	
				Ac-228	105,40	0,015	5,12·10 ¹² *	Th-232
				Np-239	106,13	0,0259	2,356	
	163,58	0,0155		Ba-140	162,66	0,0649	12,753	
				U-235	163,36	0,0508	2,57·10 ¹¹	
				Cs-136	163,92	0,0339	13,16	
	209,00	0,0173		U-237	208,00	0,213	6,749	
				Ac-228	209,25	0,0397	5,12·10 ¹² *	Th-232
	- · -			Np-239	209,75	0,0342	2,356	
	340,08	0,225		Ra-223	338,28	0,0285	7,95·10 ³ *	Ac-227

ISSN 1865-8725

Version März 2019

Messanleitungen für die "Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung"

Radio- nuklid/ - paar	Ε γ	\boldsymbol{p}_{γ}	t,	Stör- nuklid	Eγ	ρ γ	t _r	Mutter des Stör- nuklids
	in keV		in d		in keV		in d	
Pm-151				Ac-228	338,32	0,114	5,12·10 ¹² *	Th-232
				Cs-136	340,55	0,422	13,16	
Eu-152	121,78	0,2841	4,94·10 ³	Se-75	121,12	0,1686	119,78	
				Co-57	122,06	0,8549	271,81	
				Eu-154	123,07	0,404	3,14·10 ³	
	778,90	0,1297		Mo-99	777,92	0,0428	2,748	
	1408,0	0,2085		Bi-214	1407,98	0,02389	5,82·10 ⁵ *	Ra-226
Eu-154	123,07	0,404	3,14·10 ³	Se-75	121,12	0,1686	119,78	
				Eu-152	121,78	0,2841	4,94·10 ³	
				Co-57	122,06	0,8549	271,81	
	723,30	0,2011		I-131	722,91	0,0179	8,023	
	1274,43	0,34		Na-22	1274,54	0,9994	950,69	
Eu-155	105,31	0,211	1736	Pm-151	104,84	0,035	1,183	
				Ac-228	105,55	0,015	5,12·10 ¹² *	Th-232
				Np-239	106,13	0,0259	2,356	
Eu-156	723,47	0,054	15,19	Zr-95	724,19	0,4427	64,03	
	811,77	0,097		Co-58	810,76	0,9944	70,85	
				I-132	812,0	0,055	3,23*	Te-132
Re-186	137,16	0,0942	3,719	Se-75	136,00	0,577	119,78	
				Co-57	136,47	0,1071	271,81	
Ir-192	205,79	0,0334	73,827	U-235	205,32	0,0502	2,57·10 ¹¹	
	295,96	0,2872		Pb-214	295,22	0,1841	0,0187	Ra-226
	604,41	0,082		Sb-127	603,9	0,0421	3,85	
				Cs-134	604,72	0,9763	754,0	
Ra-224	240,99	0,0412	3,631	Pb-214	242,00	0,0727	0,0187	Ra-226
Ra-226	186,21	0,0356	5,84·10 ⁵	U-235	185,72	0,570	2,57·10 ¹¹	
U-235	143,78	0,1094	2,57·10 ¹¹	Ra-223	144,27	0,03336	7,95·10 ³ *	Ac-227
	163,36	0,0508		Ba-140	162,66	0,0649	12,753	
				Pm-151	163,58	0,0155	1,183	
				Cs-136	163,92	0,0339	13,16	
	185,72	0,570		Ra-226	186,21	0,0356	5,82·10 ⁵	
	205,32	0,0502		Ir-192	205,79	0,0334	73,827	
U-237	208,00	0,213	6,749	Pm-151	209,00	0,0173	1,183	
				Ac-228	209,25	0,0397	5,12·10 ¹² *	Th-232
Np-239	106,12	0,259	2,356	Pm-151	104,84	0,035	1,183	
				Eu-155	105,31	0,211	1736	
				Ac-228	105,55	0,015	5,13·10 ¹² *	Th-232
	209,75	0,0342		Pm-151	209,00	0,0173	1,183	
				Ac-228	209,25	0,0397	5,12·10 ¹² *	Th-232
	000.15			Th-227	210,62	0,0122	18,718	Ac-227
	228,18	0,1132		Pa-234	227,25	0,058	1,63.1012*	U-238
	277 60	0 1 4 4		1-132 TL 200	228,33*	0,8812*	3,23 [↑]	10-132
	277,60	0,144		11-208	211,31	0,066	ס,טצס^	10-228
* kernphysikalische Daten des Mutternuklids								

3 Rückstreuung und Comptonstreuung

Im Impulshöhenspektrum können linienähnliche Strukturen auftreten, die auf Rückstreuung und Comptonstreuung zurückzuführen sind.

In Tabelle 2 sind für ausgewählte Gammaenergien entsprechende Energien, die bei Rückstreuung und Comptonstreuung auftreten, zusammengestellt.

3.1 Rückstreuung

Bei der Weitwinkelstreuung von Gammastrahlung der Energie E_{γ} in dem Material, das den Detektor umgibt (z. B. Abschirmung), gelangen die in einem Winkel von etwa 180° rückgestreuten Gammaquanten in den Detektor und erzeugen im Impulshöhenspektrum eine breite linienartige Struktur. Die Energie E_{R} dieser sogenannten Rückstreulinie lässt sich nach Gleichung (1) berechnen.

$$E_{\rm R} = \frac{E^2}{511 + 2 \cdot E} \tag{1}$$

Darin bedeuten:

E Energie der Gammastrahlung, in keV;

 $E_{\rm R}$ Energie der Rückstreulinie, in keV.

3.2 Comptonstreuung

Der Comptoneffekt tritt bei der Wechselwirkung von Photonenstrahlung mit Materie auf. Dabei wird ein Photon an einem freien Elektron oder quasi-freien Elektron in der Elektronenhülle eines Atoms elastisch gestreut. Erfolgt diese sogenannte Comptonstreuung unter einem Winkel von 180°, erzeugt sie in einem Impulshöhenspektrum eine linienartige Struktur. Diese breite und stark asymmetrische Linie wird allgemein als Comptonkante bezeichnet. Die Energie der Comptonkante E_c wird nach Gleichung (2) berechnet:

$$E_{\rm C} = \frac{E}{1 + \frac{2 \cdot E}{511}} \tag{2}$$

In Gleichung (2) bedeuten:

E Energie der Gammastrahlung, in keV;

*E*_c Energie der Comptonkante, in keV.

Energie der Gammastrahlung]	Energie der Rückstreulinie <i>E</i> _R	Energie der Comptonkante <i>E</i> c					
in keV		in keV	in keV					
a) Berechnete Beispiele im gesamten interessierenden Energiebereich (zur Veranschaulichung der Energieabhängigkeit)								
10		9,62	0,38					
100		71,87	28,13					
300		137,98	162,02					
1000		203,50	796,50					
2000		226,56	1773,44					
3000		235,45	2764,55					
b) In der Praxis auftretende Linien üblicher Radionuklide								
21,99	(Cd-109)	20,25	1,74					
24,70	(X-ray, Sn)	22,52	2,18					
46,54	(Pb-210)	39,34	7,17					
59,54	(Am-241)	48,29	11,25					
80,99	(Ba-133)	61,50	19,49					
88,03	(Cd-109)	65,47	22,56					
122,06	(Co-57)	82,80	39,46					
136,47	(Co-57)	88,96	47,51					
165,86	(Ce-139)	100,57	65,29					
276,40	(Ba-133)	132,77	143,63					
302,85	(Ba-133)	138,58	164,27					
356,01	(Ba-133)	148,75	207,26					
604,72	(Cs-134)	179,61	425,11					
661,66	(Cs-137)	184,32	477,34					
795,68	(Cs-134)	193,40	602,28					
834,85	(Mn-54)	195,63	639,17					
898,04	(Y-88)	198,91	699,09					
1115,54	(Zn-65)	207,89	907,65					
1173,23	(Co-60)	209,81	963,42					
1332,49	(Co-60)	214,39	1118,10					

Tab. 2:Energien der Rückstreulinie und Comptonkante bei ausgewählten Energien
der Gammastrahlung

Mit abnehmender Gammastrahlungsenergie verringert sich der Abstand zwischen Rückstreulinie und Gammalinie, so dass vor allem unterhalb von 100 keV die Auswertung von Gammalinien erschwert wird.

3.3 Beispiele

Rückstreulinien und Comptonkanten können insbesondere dann die Auswertung von Impulshöhenspektren erschweren, wenn die Gammalinien der sie verursachenden Radionuklide im Impulshöhenspektrum mit hinreichend hoher Impulsanzahl vorliegen. Beispiele hierfür sind:

- a) Caesium-137:
 - Die Rückstreulinie von Cs-137 liegt bei einer Energie von 184,32 keV. Dadurch stört sie die Auswertung der Gammalinie von Ra-226 bei einer Energie von 186,21 keV beziehungsweise der Gammalinie von U-235 bei einer Energie von 185,72 keV.
 - Die Comptonkante von Cs-137, die bei einer Energie von 477,34 keV liegt, stört die Auswertung der Gammalinie von Be-7 bei einer Energie von 477,60 keV.
- b) Americium-241:
 - Durch die Rückstreulinie des Am-241 bei einer Energie von 48,29 keV kann die Auswertung der Gammalinie von Pb-210 bei einer Energie von 46,54 keV erschwert werden.
- c) Cobalt-57:
 - Seine Rückstreulinie mit der Energie von 88,97 keV kann fälschlicherweise als Gammalinie von Cd-109 ($E_{\gamma} = 88,00$ keV) interpretiert werden.
 - Die zugehörige Comptonkante bei 47,51 keV kann bei schlechtem Energieauflösungsvermögen der Gammaspektrometriemesseinrichtung ebenfalls die Auswertung der Gammalinie von Pb-210 bei einer Energie von 46,54 keV erschweren.

Anmerkung:

Erfolgt die Entfaltung eines Impulshöhenspektrums über eine automatische Auswerteroutine, können Rückstreulinien und Comptonkanten als Gammalinien verschiedenster Radionuklide identifiziert werden. Deshalb sollte die voreingestellte Halbwertsbreite (Energieauflösung) so angepasst werden, dass sie nicht kleiner als die der Rückstreulinie oder Comptonkante ist.