History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008							

 $Q(\beta^{-})=1646 \ 3; \ S(n)=7271.41 \ 17; \ S(p)=6523.1 \ 24; \ Q(\alpha)=-3076 \ 4 \ 2012Wa38$

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=1650$ 7; S(n)=7271.41 17; S(p)=6523 3; $Q(\alpha)=-3077$ 5 2003Au03

Additional high energy transitions reporting in (n, γ) could be primary transitions defining additional levels above 1200 keV.

¹⁰⁸Ag Levels

For unplaced transitions see $(p,n\gamma)$ and (n,γ) E=th.

Cross Reference (XREF) Flags

		A 100 B 100 C 100 D 100	⁸ Ag IT decay (4 ⁷ Ag(n, γ) E=th: ⁷ Ag(n, γ) E=then ⁷ Ag(n, γ) E=16.2	438 y) E 107 Ag(n, γ) E=2,24 keV: av res secondary F 107 Ag(d,p) rmal: primary G 108 Pd(p,n γ) 3 eV H (HI,xn γ)
E(level) [†]	Jπ&	T _{1/2}	XREF	Comments
0.0	1+	2.382 min 11	ABCDE G	$%β^-=97.15\ 20;\ %ε+%β^+=2.85\ 20$ μ=2.6884 7 J ^π : atomic beam (1976Fu06). π: E1 γ from 2 ⁻ . T _{1/2} : from wt avg (Lweight program) of 2.353 min 9 (1992KaZM), 2.37 min 1 (1974Ry01), 2.38 min 3 (1971Jo07), 2.41 min 2 (1965Eb01), 2.42 min 2 (1960Wa10), 2.43 min 5 (1958Gu09). Earlier measurements: 1962Th12, 1957Se19, 1948Pe03, 1948Mo33. μ: from radiative detection of NMR (1989Ra17).
79.1401 23	2-	1.2 ns 4	ABC EFG	E(level): probable configuration= $((\pi \ 1g_{9/2})_{7/2}^{-} (\nu \ 2d_{5/2}))1^+$. J^{π} : E1 γ to 1 ⁺ . M4 γ from 6 ⁺ . π from L(d,p)=2.
109.466 7	6+	438 y 9	AB H	T _{1/2} : from γγ(t) in (n,γ). T _{1/21/2} <1 ns from ceγ(t) in ¹⁰⁸ Ag it decay. %IT=8.7 9; %ε+%β ⁺ =91.3 9 Q=+1.32 7; μ=3.580 20 J ^π : optical hyperfine structure pattern (1975Fi07). π from M4 γ to 2 ⁻ . T _{1/2} : from 2004Sc04. 2004Sc04 has followed the decay by using a ionization chamber for about 20 years.Others: 310 y <i>132</i> (1969Vo11), 127 y 21(1970Ha32), 418 y <i>15</i> (1992Sc25). μ: from optical interference spectroscopy of hyperfine structure (1989Ra17). Q: from 1984Be53. Jπ: $\Delta < r^2 > (^{108}Ag - ^{107}Ag) = 0.022 3 \text{ fm}^2$, ($^{110}Ag - ^{108}Ag) = 0.152 10 \text{ fm}^2$ (1975Fi07) where the ¹¹⁰ Ag level referred to is the isomer.
155.900 7 193.073 <i>3</i> 206.614 <i>3</i> 215.382 <i>4</i>	5+,6+ 1+ 2+ 3+	<0.5 ns <0.2 ns 45.8 ns 7	B BCDE G BC E G B FGH	$J^{\pi}: \text{ see 598 level.} $ J ^π : E1 γ to 2 ⁻ . Fed in (n,γ) from 0 ⁻ . J ^π : E1 γ to 2 ⁻ . Fed in (n,γ) from 0 ⁻ . J ^π : M1 γ to 1 ⁺ . γ(θ) in (p,nγ). μ=+3.888 J5 (1989Ra17) J ^π : E1 γ to 2 ⁻ . γ(θ) and excitation function in (p,nγ). T _{1/2} : from p,γ(t) in (p,nγ). Other: 50 ns 3 (n,γ). μ: from γ(θ,H,t) in (p,nγ).
286.7? [‡] 5 290.18 23 294.560 3 324.497 4 331.6 5	2+ 3+	<0.14 ns	G H BCEG BG G	J ^{π} : M1 γ 's to 1 ⁺ and 2 ⁺ . $\gamma(\theta)$ in (p,n γ). J ^{π} : M1 γ to 2 ⁺ . $\gamma(\theta)$ in (p,n γ).

					Adop	oted Le	evels,	Gami	nas 2	2004Ti06			
	-	Type			Auth	ıor	1	listory	1	Cit	tation		Literature Cutoff Date
	Full E	Evaluation	J. H. I	Kelley, C. (G. Sheu	and J.	L. Go	odwin,	et al.	NP A745	155 (20	004)	31-Mar-2004
0.00-1 554.0				10/0/ 00									
$Q(\beta^{-})=556.8$ Note: Curren	4; S(r t evalu	1)=6812.28	5; S(p): used the	=19636.39 following (20; $Q(\alpha)$)=-74	09.52	10	2012W	/a38			
$Q(\beta^{-})=556.0$	6; S(r	n)=6812.2	6; S(p)=	19636.6 19	$Q; Q(\alpha) =$	-7413	.39	200	3Au03				
							10						
							¹⁰ E	Be Lev	rels				
					(Cross I	Refere	ence (2	KREF) I	Flags			
		А	⁶ Li(⁶ He	α^6 He).(⁶ F	Ie. ¹⁰ Be)	N	⁹ B	e(¹¹ Be	10 Bev)	$(^{11}B, ^{10}B)$	Othe	rs:	
		В	$^{7}Li(t,\gamma)$,(t,n),(t,p),(t,t)	0	⁹ B	e(¹⁴ N,	¹³ N)	,(D, D)	AA	¹² C	(⁶ He, ¹⁰ Be)
		С	⁷ Li(³ He	(π^+)		Р	¹⁰ E	Be(p,p'),(d,d)		AB	^{12}C	$({}^{6}\text{Li}, {}^{8}\text{B})$
		D	$^{\prime}\text{Li}(\alpha, p)$)	N	Q	10 E	$\beta(\gamma,\pi^+)$)		AC	¹² C	$({}^{9}Be, {}^{11}C)$
		F	9Be(n, y	$(\alpha), (L1, \alpha\gamma)$ E=therm) al	ĸ	10 F	(μ, ν) $(\pi^- \nu)$)		AD	^{12}C	$(^{11}B^{13}N)$
		G	⁹ Be(n,n),(n,n'),(n,2	2n)	Т	¹⁰ E	B(n,p),	(d,2p)		AF	¹² C	$({}^{12}\text{Be}, \alpha^6\text{He})$
		Н	⁹ Be(n,p),(n,d),(n,t)		U	¹⁰ E	$B(t, ^{3}He$	e)		AG	^{12}C	$({}^{12}C, {}^{10}Be)$
		I	$^{9}Be(p,\pi)$	·+)		V	¹⁰ E	$B(^{7}Li, ^{7}Li)$	Be)		AH	¹² C	$(^{15}N,^{17}F)$
		У	$^{9}Be(\alpha)^{3}$	$(d, p\gamma)$		W	11 E	$\beta = \beta = n$	decay		A1 A1	14C	$(1, 0L_1)$ $(18O 22N_P)$
		L	⁹ Be(⁷ Li	⁶ Li),(⁸ Li, ⁷	Li)	Y	¹¹ E	$(d, {}^{3}H)$	e)		AK	¹¹ B	$(t,\alpha\gamma)$
		М	9Be(9Be	e, ⁸ Be)		Z	¹¹ E	$(^{7}Li,^{1})$	0 Be γ)		AL	⁹ Be	(n,γ) res
E(level)	\mathbf{J}^{π}	T _{1/}	2		XRI	EF						Com	ments
0.0	0+	1.51×	10 ⁶ y 4	AB DEF	IJKLMN	IOPQ S	STUVW	XYZ	XREF	: Others: A	A, AB, A	AC, AE,	, AG, AH, AI, AJ
									$\%\beta^{-}=$ T=1	100			
									$T_{1/2}$: f	from weigh	nted ave	rage o	f T _{1/2} =1.51 Ma 6 (Hofmann
									et al	I., Nucl. In	strum. 1	Meth.	Phys. Res. β 24-25 (1987)
									270) Ma	5% (1993)	5 Ma 5 Mi26).	70 (19)	(11/2), and $(11/2)$ = 1.48
3368.03 3	2+	125 fs 12	2	ABCDEF	IJKLMN	IOPQRS	STUVW	XYZ	XREF	: Others: A	A, AB, A	AC, AE,	, AG, AH, AI, AJ
									%IT=1 T-1	100			
									$\Gamma_{\gamma}=3.6$	66×10 ⁻³ e	V 35		
									B(E2)=	$=52 e^2 fm^4$	6 (19	87Ra0	01).
									E(level	1): from ${}^{9}E$	$Be(n,\gamma)$	(1983H	Kell). Other value:
5958.39 5	2+	<55 fs		DF	JKLM	PR	TU W	Y	XREF	: Others: A	B. AE. A	G. AH.). . АТ
									%IT=1	100	-,,-		
									T=1	D. C 9T		(10021	(11) Other 1
									E(level 5958	8.3 keV 3 ((1969A)	(1985r [17].	(e11). Other value:
5959.9 6	1^{-}			D	JKLMN	10	Т	Y	XREF	: Others: A	В		
									%IT=1	100			
									E(leve)	1): from ⁹ B	Be(d.p) ((1969 <i>A</i>	A117).
6179.3 7	0^+	0.8 ps	+3-2	D	J		W		%IT≈1	100	(-, P)		
									T=1 decav	May also	decay b	w nair	production
									E(level	l): from ⁹ B	Be(d,p) ((1969A	All7). Other value:
									6070	0 keV 130	(1973D	a09).	

	Type	Author	History	Literature Cutoff Date				
	Type	Autio	Citation	Literature Cuton Date				
	Full Evaluation	ull Evaluation Khalifeh Abusaleem NDS 112, 2129 (2011)						
$Q(\beta^{-})=124.6 \ 14; \ S(n)=6$	$.30 \times 10^3 SY; S(p) = 4$	4832 6; $Q(\alpha)$ =5523.4 2	1 2012Wa38					
Note: Current evaluation	has used the follow	wing Q record.						
124.0 14 6300 syst 4832	5 5525.0 23 200	09AuZZ,1995Au04.						
Estimated $\Delta S(n)=71$ (20)	1AuZZ).							
$Q(\beta^{-})=124.0 \ 14; \ S(n)=6$	301 <i>SY</i> ; S(p)=4832	5; Q(α)=5525.0 23	2011AuZZ					
Calculations, compilation	::							
α decay, deformation par	ameters: 1996St14	, 1996St28.						
α decay, T _{1/2} (α): 1993Bi	109, 1992Bu03.							
Ground state properties:	1997Mo25, 1997M	1029.						
Dian Jacon 10001-05								

Pion decay: 1988Io05.

Single-particle Nilsson levels: 2004Pa04, 1994Cw02.

2004Pa04 calculate the following single-particle level sequence: 0.05 MeV 7/2[633], 0.25 MeV 5/2[642], 0.35 MeV 1/2[400], 0.51 MeV 3/2[402], 0.54 MeV 1/2[521].

1994Cw02 calculate the following single-particle level sequence: g.s. 3/2[521], 0.15 MeV 7/2[633], 0.34 MeV 5/2[642], 0.44 MeV 1/2[660], 0.63 MeV 3/2[651], 0.82 MeV 5/2[523].

Measured relative L and M x-ray intensities: 1990Po14. See 1975Er01 for rotational band assignments.

²⁴⁹Bk Levels

Cross Reference (XREF) Flags

- A 249 Cm β^- decay
- B 253 Es α decay (20.47 d)
- C 248 Cm(α ,t),(3 He,d)
- D Coulomb excitation

E(level) ^C	J^{π}	$T_{1/2}^{d}$	XREF	Comments
0.0 [†]	7/2+	330 d 4	ABCD	$\% \alpha = 0.00145 \ 8; \ \% \beta^- = 99.99855 \ 8; \ \% SF = 47 \times 10^{-9} \ 2$ $\mu = 2.0 \ 4 \ (1989 \text{Ra}17, 1972 \text{Bo}67); \ Q = 5.79 \ (1996 \text{FiZX})$ E(level): 5.93 <i>11</i> (1982 \text{Be}12).
				J ^{π} : electron paramagnetic resonance (1967Wo01); π , configuration from favored α decay from ²⁵³ Es.
				$\Gamma_{1/2}$: from 1985Po26. Others: 325 d / (19/4GI10), 314 d 8 (195/Ea01). % α : from $\alpha/\beta^{-}=1.45 \times 10^{-5} 8$ (1969Mi08). Other: 2.2×10 ⁻⁵ 3 (1957Ea01).
				%SF: from $T_{1/2}(SF)=1.87\times10^9$ y 9 (1969Mi08). Other: $\ge 1.4\times10^9$ y (1957Ea01). μ : other: $5.1.7$ (1969Wo07) believed to be based on invalid assumptions (1972Bo67), +3.45 10 (from Coul.ex. 1982Be12).
				Q: others: 4.7 10 (1969Wo07), Q=5.79.
8.777 [‡] 14	3/2-	0.3 ms	ABC	J ^{π} : log fr=5.9 from 1/2 ⁽⁺⁾ ²⁴⁹ Cm limits J ^{π} to 1/2±, 3/2±; T _{1/2} is consistent with M2 transition to g.s., $\Delta L \ge 3$ ruled out (B(E3)(W.u.)≈540 (RUL=100), B(M3)(W.u.)≈7000 (RUL=10)).
39.622 [‡] 13	(5/2-)		ABC	J ^{π} : M1+E2 γ to (3/2 ⁻) level; member rotational band.
41.805 [†] 8	9/2+	9 ps 2	BCD	J^{π} : M1+E2 γ to 7/2 ⁺ level; band structure.
82.599 [‡] 13	7/2-		ABC	J^{π} : E2 γ to (3/2 ⁻) level, M1+E2 γ to (5/2 ⁻) level; member rotational band.
93.759† 8	11/2+	5 ps 1	BD	J^{π} : E2 γ to 7/2 ⁺ g.s., M1+E2 γ to 9/2 ⁺ level; rotational structure.

					Adopted Le	vels, Gam	mas			
		Туре		A	His	story		Citation	Literature Cutoff Date	
	Full I	Evaluation S.	Kumar(a), J	J. Che	en(b) and F. G.	Kondev	ND	S 137, 1 (2016)	31-May-2016	
$Q(\beta^{-}) = -2016$ Additional info	4; S(n)= ormation	7323.1 <i>18</i> ; S(p): 1.	=8186.6 28;	; Q(α	r)=-2511.5 <i>19</i>	2012Wa	a38			
					¹⁰⁹ Cd	Levels				
Cross Reference (XREF) Flags										
			A 1 B 1 C 1 D 9 E 9	¹⁰⁹ In ¹⁰⁹ Cd ¹⁰⁹ Cd ⁹⁶ Zr(¹ ⁹⁶ Zr(¹	ε decay IT decay (11.8 IT decay (10.6 ¹⁶ Ο,3nγ) ¹⁸ Ο,5nγ)	F μs) G μs) H Ι	10 10 10 11	$^{00}Mo(^{13}C,4n\gamma)$ $^{08}Pd(\alpha,3n\gamma)$ $^{09}Ag(p,n\gamma)$ $^{10}Cd(d,t)$		
E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{i}$	XREF					Comments		
0.0 59.60 7	5/2 ⁺	461.9 d <i>4</i> 11.8 μs <i>16</i>	ABCDEFGI	HI	%ε=100 μ=-0.8278461 J ^π : optical-doul L(d,t)=2. T _{1/2} : using the (2014Un01), (2004Sc04), (1981Va11), and 470 d 8 (1982HoZJ), superseded b μ: from 2014St Q: from 2013Y 1969La06 by configuration: a %IT=100 J ^π : L(d,t)=0; 59	15; $Q=+1$ ble resona 462.36 d 460.2 d 4 450 d 5 ((1950Gu5 463.26 6 by 2014Un ZZ, based 002 by co y optical d a mixture 9.6y E2 to	D.604 nce (33 a (199 1968 4). C 3 (19 01. 1 on 011. 1 on 011 betw $5/2^2$	4 25 (1976Fu06); direc Relative Statistica and 461.92 d 76 (2 97Ma75), 463.1 d BRe04), 459 d 6 (2 Other: 330 d (194 992Un01,2002Un0 1972Sp09 and 19 ar laser spectrosco e resonance. 'een $vd_{5/2}$ and vg_7 +.	at ε to 7/2 ⁺ level in ¹⁰⁹ Ag; al Weight method and 462.3 d 8 2011Va02), 459.6 d <i>17</i> 4 (1982La25), 461.9 d 3 1968Ea01),453 d 2 (1965Le06) 7Br05). Values of 463.2 6 92) and 462.6 6 (2012Fi12) are 63By02 data. opy. Other: +0.69 7 from w_{12} orbitals.	
203.40 <i>5</i> 347.51 <i>6</i>	7/2+ 5/2+	36 ps +6-1	A CDEFGI	HI	¹⁰⁹ Cd IT dec configuration: J^{π} : L(d,t)=4, 20 T _{1/2} : from mic configuration: J^{π} : L(d,t)=2, 28	cay. $v_{S_{1/2}}$. 03.5γ M1 prowave m $v_{g_{7/2}}$. 88.1γ E2	to $5/$ odula	2^+ . ation of beam and 2^+ .	l lens spectrometer (1969Be37).	
426.42 <i>6</i> 463.10 [‡] <i>11</i>	5/2+ 11/2-	10.6 µs 4	A H	HI HI	J ^{π} : L(d,t)=2; 42 %IT=100 Q=-0.92; μ =- J ^{π} : L(d,t)=5, 22 T _{1/2} : weighted 10.8 μ s 16 (1) μ : from a meas Distribution Q: from 1978S (TDPAD) me by assuming with an incre configuration: μ	26.3 γ M1 1.096 2 59.7 γ M2 average of 19681v02) surement h (SOPAD) p09 by the ethod. Val that the m easing neuv $h_{11/2}$.	+E2 to 7/ of 10, , and oy the methe Tin ue m nagni tron	to $5/2^+$; 679.5y fm /2 ⁺ . .4 μ s 6 (1964Br27) l 10.8 μ s 7 in 197 e Stroboscopic Ob nod (2014StZZ). ne Dependent Per neasured relative to itude of Q follows number.	rom $9/2^+$. 7), 10.4 μ s 10 (1966Mc06), 5Me22. Deservation of Perturbed Angular turbed Angular Distribution turbed Angular Distribution o Q for ¹⁰⁷ Cd and ¹¹¹ Cd and s the relative h _{11/2} shell filling	

History Literature Cutoff Date Type Author Citation Full Evaluation Jean Blachot NDS 111, 1471 (2010) 1-May-2009 $Q(\beta^{-})=322.6 \ 8; \ S(n)=6538.8 \ 6; \ S(p)=9748.5 \ 25; \ Q(\alpha)=-3861.5 \ 12$ 2012Wa38 Note: Current evaluation has used the following Q record. $Q(\beta^{-})=322$ 1; S(n)=6540.1 6; S(p)=9750 3; $Q(\alpha)=-3868$ 3 2003Au03,2009AuZZ Neutron resonance parameters can be found in 1981MuZQ. α : Additional information 1. 113Cd Levels Cross Reference (XREF) Flags ¹¹⁰Pd(α ,n γ) ¹¹³Ag β^{-} decay (5.37 h) F $^{113}Cd(p,p'),(p,p'\gamma)$ K A ¹¹³Ag β^- decay (68.7 s) ¹¹³Cd IT decay (14.1 y) ¹¹³Cd(d,d') 176Yb(28Si,Fy) В G L 173 Yb(24 Mg,Fy) С Η Coulomb excitation Μ ¹¹³Cd(n,n' γ) ¹¹²Cd(pol d,p) ¹¹²Cd(n, γ) E=res D Ι N ¹¹²Cd(d,p), ¹¹⁴Cd(d,t) ¹¹³Cd(γ, γ') ¹¹⁴Cd(pol d,t) E ٦ 0 E(level)‡ XREF Comments $T_{1/2}$ $1/2^{+}$ 8.04×10¹⁵ y 5 ABCDEFGHIJKLMNO 0.0 $\%\beta^{-}=100$ $\mu = -0.6223009 \ 9 \ (1989 \text{Ra} 17)$ μ : optical pumping, NMR. J^{π} : NMR and optical spectroscopy (1976Fu06), L(d,p)=0. T_{1/2}: From 2007Be61 Measured in CdWO₄ crystal at Gran Sasso National Lab of INFN. Measured half-life of ¹¹³Cd using the low-background CdWO4 crystal scintillator of mass 434g. Others: 7.7×10¹⁵ y 3 (1996Da11) using scintillation crystals of CDW04. 9.3×10¹⁵ y 19 (1970Gr20) from activity measurements on enriched and natural cadmium samples. Others: 1962Wa15, 1994A149. %IT=0.14; %β⁻=99.86 (1969De25) 263.54# 3 ACE KLMNO $11/2^{-}$ 14.1 y 5 Q = -0.717μ: \$μ=-1.0877842 17 (1989Ra17) NMR. Q: optical double res, recalculated (1989Ra17). J^{π}: optical double res (1976Fu06), 264 γ is E5. T_{1/2}: unweighted av of 13.6 y 2 (1965FI02) and 14.6 y 5 (1972Wal1), $\beta(t)$ for about one half-life. μ=-0.39 80 (1988Be45,1989Ra17) 298.597 10 29 ps 9 E GHI K NO $3/2^{+}$ AB T_{1/2}: from B(E2) in Coul. ex. J^{π} : M1+E2 γ to 1/2⁺, L(pol d,p)=2. 316.206 15 $5/2^{+}$ 10.8 ns 3 EF HI K NO J^{π} : L(d,p)(316)=2, L(d,p)(458)=4, and M1+E2 γ from 459 to AB 316 gives $J\pi(316)=5/2^+$ and $J\pi(458)=7/2^+$. T_{1/2}: weighted av of 10.7 ns 4 (1980Oh01), 11.0 ns 6 (1972RaZM). Other: 4.9 ns 7 from B(E2) in Coul. ex. J^{π} : see 316 level, L(pol d,p)=4. 458.633 17 7/2+ В E ΙK NO J^{π} : E2 γ to 11/2⁻ and E1 γ to 5/2⁺, L(pol d,p)=3. T_{1/2}: from $\gamma\gamma$ (t) (1980Oh01). ΙK 522.259 24 7/2-0.322 ns 12 NO A 7/2+,9/2+ J^{π} : from L(d,p)=4. 530 10 E HIK NO $\mu = +0.15$ 12 (1988Be45, 1989Ra17) 5/2+ 6.9 ps 14 AB E 583.962 24 J^{π} : $\gamma(\theta)$ in Coul. ex. for E2 γ to $1/2^+$, L(pol d,p)=2. T_{1/2}: from B(E2) in Coul. ex. J^{π} : L(pol d,p)=2. 626.6 12 $(3/2^+)$ N J^{π} : M1+E2 γ to 11/2⁻. γ to 5/2⁺, L(pol d,p)=5. ΙK Ν 638.19 3 9/2-F A

Adopted Levels

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Y. Akovali	NDS 94,131 (2001)	1-Aug-2001						

 $Q(\beta^{-})=39$ 12; S(n)=5832 10; $S(p)=7.4\times10^{3}$ SY; $Q(\alpha)=5169$ 18 2012Wa38 Note: Current evaluation has used the following Q record. $Q(\beta^{-})=37 \ 11; \ S(n)=5832 \ 10; \ S(p)=7409 \ SY; \ Q(\alpha)=5169 \ 19$ 1995Au04

Theoretical studies:

For theoretical calculations of spontaneous fission half-life of ²⁵⁰Cm, see, for example, 1974Ho05, 1976Ra02, 1978Po09,

1983Bo15, 1987Mo16, 1989St20 (included pairing vibrations).

Decay by pion emission probability relative to SF decay was calculated by 19881004.

For fission barrier calculations, see 1972Ma11, 1973Ba19, 1976Iw02, 1977Pr10, 1980Ku14, 1984Ku05, 1991Pe03.

For equilibrium deformations calculations, see 1982Du16, 1983Bo15.

Spontaneously fissioning isomeric state was predicted, and its properties were calculated by 1978Po01, 1992Bh03.

For the calculated $\beta(E2; 0^+ \text{ to } 2^+)$ value for the excitation of the first excited state by using the N(p)N(n) scheme, see 1993Sa05.

²⁵⁰Cm Levels

Cross Reference (XREF) Flags

254 Cf α decay A

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	0+‡	≈8.3×10 ³ y	A	%SF≈74; %α≈18; %β ⁻ ≈8 only SF decay has been observed. Spontaneous fission half-life was measured: T _{1/2} (SF)=17.4×10 ³ y 24 (1966Rg01); 11.3×10 ³ y 5 (1967Me16). Other measurement: 20×10 ³ y (1957Hu76). T _{1/2} (SF)=11.3×10 ³ y 5 is recommended by 1989Ho24 and 2000Ho27. any probable α and β ⁻ decay branchings May be deduced from estimated partial half-lives (see below): if T _{1/2} (α)=45.5×10 ³ y 7 and T _{1/2} (β ⁻)≈106×10 ³ y, then, by using T _{1/2} (SF)=11.3×10 ³ y, the total half-life and decay branchings are calculated as T _{1/2} ≈8.3×10 ³ , and %SF≈74, %α≈18, %β ⁻ ≈8. from absence of ²⁵⁰ Cf in debris of a thermonuclear explosion test, 1956Fi11 deduced that either ²⁵⁰ Cm is stable against β decay or its β half-life is >130 y. because of the available Q(β ⁻)(²⁵⁰ Cm)=37 11, any β transition from ²⁵⁰ Cm should populate only the 2 ⁻ g.s. of ²⁵⁰ Bk. Requirement of log f ^{4u} t≥8.5 yields T _{1/2} (β ⁻)≥6.7×10 ³ y. If log f ^{4u} t≈9.7, as it is for the ²⁵⁰ Bk β ⁻ decay to ²⁵⁰ Cf g.s., then T _{1/2} (β ⁻)≈106×10 ³ y. from r ₀ systematics (see 1998Ak04), r ₀ =1.515 5 is estimated; by using this r ₀ parameter, Q(α)(²⁵⁰ Cm)=5269 19 (from 1995Au04), Iα(unobserved 5086α; g.s. to g.s.)=85 15 per 100 α decays [from systematics Iα(to g.s.)/Iα(to 2 ⁺) for the region], and by requiring that Hf(5086α)=1.0, the partial α decay half-life of ²⁵⁰ Cm is calculated as T _{1/2} (α)=45.5×10 ³ y 7.
				for a systematic study of spontaneous fissioning nuclei, see, for example, 1997Ro12.
13 5	2+‡		٨	In the kinetic energy distribution of institution from 254 Cf. energy systematics of 2 ⁺ levels in
T J J	2		A	nearby even-A californium isotopes.

[†] Levels were populated in 254 Cf α decay.

[‡] K=0 g.s. rotational band.

	History						
Туре	Author	Citation	Literature Cutoff Date 1-Oct-2006				
Full Evaluation	E. Browne, J. K. Tuli	NDS 108,2173 (2007)					
$Q(\beta^-)=1175.63\ 18;\ S(n)=8278.2\ 19;\ S(p)=1175.63\ 18;\ S(n)=8278.2\ 19;\ S(p)=1175.63\ 18;\ S(n)=8278.2\ 19;\ S(p)=1175.63\ 18;\ S(n)=8278.2\ 19;\ S(p)=1175.63\ 18;\ S(n)=8278.2\ 19;\ S(n$	7405.6 4; $Q(\alpha) = -3084$ 5	2012Wa38					

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=1175.63 \ 17; \ S(n)=8278.2 \ 19; \ S(p)=7409 \ 7; \ Q(\alpha)=-3084 \ 5 \ 2003Au03$

Theory: 2000Yo08, 1998Su03, 1993Ch31.

Isotope Shifts: 2000Ga58, high-resolution resonant laser spectroscopy.

 γ -ray source properties: 2000He14.

References where ¹³⁷Cs is used as the standard source, such as, for various calibrations, ETC., and not in study of ¹³⁷Cs structure, have not been included.

137Cs Levels

Cross Reference (XREF) Flags

$E(\text{level})^{\dagger}$ $J^{\pi \ddagger}$ $T_{1/2}$ XREF Comments	
0.0 [@] 7/2 ⁺ 30.08 y 9 A CDEFGH $\%\beta^-=100$ $\mu=+2.8413 \ I \ (1989Ra17); Q=+0.051 \ I \ (1989Ra17)$ $T_{1/2}$: Deduced by evaluators using the Limitation of R Weights (LRSW) method for analyzing the following $(\chi^2/\nu=18.6)$ experimental values: 10970 d 20 (2004S (2002Un02); 10941 d 7 (1992Go24); 10968 d 5 (199 (1980Ho17); 10906 d 33 (1978Gr08); 11034 d 29 (1 (1973Di01); 11023 d 37 (1972Em01); 10921 d 17 (1 (1970Ha32); 11286 d 256, 10921 d 183 (1965F101); 10665 d 110 (1963Ri02); 10840 d 18 (1963Go03); 1 11103 d 146 (1961Fa03); 10957 d 146 (1955Br06); (1955Wi21). [1 y = 365.2422 d]. Other evaluated results: 30.09 y 11 (2004Wo02); 30.08 1994Ka08); 30.11 y 3 (1992Ra08); and 30.18 y 15 (1) J ^π : from LASER spectroscopy (1978Sc27, see also 19) and (d, ³ He). μ : 1989Ra17 value based on +2.8413 4 (1957St11). O (1978Sc27), +2.84 1 (1981Th06). Q: 1989Ra17 value from 1975Ac01. Others: +0.053 4 (1978Sc27), +0.03 4 (1981Th06).	elative Statistical g set of discrepant Sc04); 11018 d <i>10</i> 90Ma15); 11009 d <i>11</i> 973Co39); 11021 d <i>5</i> 1970Wa19); 11191 d <i>157</i> 11220 d 47 (1965Le25); 0994 d 256 (1962Fl09); and 9715 d <i>146</i> S y <i>3</i> (1996ChZY, 1991BaZS). 76Fu06); L=4 in (³ He,d) thers: +2.838 7 (1972Ry03), +0.06 2
455.491 3 5/2 ⁺ ≤ 0.1 ns A CDE J^{π} : L=2 in (³ He,d) and (d, ³ He); log ft=6.8, log f ^{1u} t<8. T _{1/2} : from 1975Mo06 in ¹³⁷ Xe β^{-} decay.	5 from $7/2^-$ parent.
848.88 4 A D	
$1184.69^{(0)}$ 4 (11/2 ⁺) A FGH	
1273.20 6 A	
$1490 \ 12$ $1/2^{1}$ C $J^{*:}$ L=0 in (°He,d). $1564.11 \ 6$ A $1569.83 \ 4$ A $1574.83 \ 6$ A $1651.23 \ 6$ A $1671 \ 69^{@} \ 11 \ (15/2^+)$ FCH	
1783.46 5 A	

Adopted Levels, Gammas History Type Author Citation Literature Cutoff Date Full Evaluation S. K. Basu, A. A. Sonzogni NDS 114, 435 (2013) 1-Apr-2013 $Q(\beta^{-})=972 4$; S(n)=6423 7; S(p)=4946 6; Q(α)=2237 7 2012Wa38 S(2n)=14635 12, S(2p)=12505 8 (2012Wa38). α : Additional information 1. α : Additional information 2. ¹⁵⁰Eu Levels Cross Reference (XREF) Flags 150 Sm(p,n γ) 148 Nd(⁷Li,5n γ) A D ¹⁵²Eu(p,t) 152Sm(p,3n γ) В E 136Xe(19F,5ny) С E(level) XREF Comments $T_{1/2}$ 36.9 y 9 0.0 ABC $\%\varepsilon + \%\beta^+ = 100$ Q=+1.13 5; $\mu=+2.708$ 11 (1989Ra17) J^{π} : J(42)=0 (atomic beam) and J(g.s.)-J(42)=5 from ¹⁵⁰Sm(p,n\gamma) in-beam γ -decay (1983SoZV) via the 195.3 and 183.4 γ 's (if stretched dipole and quadrupole) and the 151.7 and 269.1 (if stretched dipoles). The first two y's establish J of level 421 equal to 3 and the latter two γ 's establish J(g.s.)=5. π =- from shell model and systematics of neighboring odd-A nuclei. T_{1/2}: from counting over 0.49×T_{1/21/2}, scin (1993Th04). Others: 34.2 y 12 (1975Ne05) scin counting over $0.17 \times T_{1/21/2}$, 36.1 y *11* (1975Ne05) mass spect. $\%\beta^{-}=89$ 2 (1965Gu03); $\%\epsilon + \%\beta^{+}=11$ 2; %IT $\leq 5 \times 10^{-8}$ 41.7 10 0-12.8 h / A %IT: From the assumption that B(M5)(W.u.) < 1, one gets %IT < 3×10^{-8} , for $\alpha(M5)=1.4\times10^7$ (1978Ba45). J^{π}: from atomic beam (1972Ek05). ε decay to 2⁺ suggests π =- as do shell-model arguments and systematics of neighboring odd-A nuclei. T_{1/2}: from 1963Yo07. 42.7 10 (1^{-}) A 69.5 8 (2^{-}) A 118.6 10 (2^{-}) A 181.1 8 A (3^{-}) J^{π} : M1 γ to 5⁻. 190.37 4 6-ABC 195.2 8 (3^{-}) Α 237.4 10 (1^{-}) A 247.89 5 ABC J^{π} : M1 γ to 5⁻. 6-269.0 5 (4^{-}) A 321.2 6 (4^{-}) А 343.1 9 (3,2)A 360.14 10 (5^{-}) ABC 406.4 10 A 412.53 6 5-ABC 417.25 5 7-ABC 420.6 8 (3^{-}) A 427.7 7 A 457.7 9 A 465.4 13 A 488.1? 7 A 496.3 12 A A 511.0 10 532.3 11 A

	Adopted Levels, Gammas							
	Туре	Author	History Citation	Literature Cutoff Date				
	Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012				
$Q(\beta^-)=237$ 3; $S(n)=8820$ Additional information 1 Others: Nuclear structure.	0 4; S(p)=13176 4;	$Q(\alpha) = -8556 \ 4 \ 2012$	Wa38	005CL10_0005D-04_0004A-00				
2012L004, 2012Mu09, 2 2004Mi54, 2004Pa04	4, 2002Ca48, 1985	BI11.	20071015, 2005A147, 20	05CH12, 2005Pu04, 2004Ag02,				
Nuclear reactions: 20115 Effect of strong magnetic	Su04, 2006Sc16, 20 c field on 60 Co ε d	003Kn01. ecay: 2007Li49.						
Compilations. B(E2) values: 2012Go17	2012Pr08 2011P	r77						

Half-lives: 2011Ch65. Discovery of element iron: 2007Li49.

Arguments for ${\rm J}\pi$ assignments

	$\gamma(\theta)$	$\gamma(\theta)$ i	in			
E(level)	L(t,p)#	in $(t, p\gamma)$	$({}^{48}Ca, 2n\gamma)$	L(a	, ² He)# (⁶⁴ Ni, $X\gamma$) Adopt
	10 10 N					
0	0			0	+	0^+
824	2	2			2+	2+
1974	0					0 ⁺
2115	4	2,4			4+	4+
2300	2	2			2+	a
2356	0					0 ⁺
2673	2	1,2,3				2+
2756	2					2+
2793					4+	4+
3039	2	1,2,3				2+
3072	4	2,4		4		4+
3293	3					3-
3308		1,2,3,4				
3499	4					(4 ⁺)
3516				4,5	(5+)	(5 ⁺)
3520			(6+)		(6+)	(6+)
3520			(4 ⁺)		(4+)	(4 ⁺)
3562	(3)					(3-)
3582			(6+)			(6+)
3635	2					2+
3698	0					0+
3867	3					3-
3904			(6+)			(6 ⁺)
3929	2					2+
3932			6+			6+
3958			6 ⁽⁻⁾			6 ⁽⁻⁾
3959			(7 ⁺)		(7 ⁺)	(7 ⁺)
4053	3					3-
4176	2					2+
4280	3					3-
4296			7(-)			7 ⁽⁻⁾
4358			7 ⁽⁻⁾	7		$7^{(-)}$
4359	5					5-
4440	3					3-
4451			6+			6+
4503	4					4+
4650	2					2+
4755	(3)					(3-)
	-					

⁶⁰₂₆Fe₃₄-2

4958	4			4+
5006		8(-)		8(-)
5029	4			4+
5103	2			2+
5218	3			3-
5310	(5)		5,7	(5-)
5333		8(+)		8(+)
5529		9(-)		9(-)
5550		8+		8+
5620	(7)		7,5	(7^{-})
5755		9-		9-
6475		10+		10+
6550		$10^{(-)}$		10(-)
6620	(8,6)		8+6	$(8^+, 6^+)$
6740		(9,10)		(9, 10)
7250		11(-)		11(-)
7632		$11^{(-)}$		11(-)
7890		11		11
8059		12+		12+
8536		$12^{(-)}$		12(-)
9503		(13-)		(13-)
9996		14+		14+
10721		(14-)		(14-)
11810		15		15
12116		(15-)		(15-)
12319		(16 ⁺)		(16+)
12833		(16 ⁻)		(16-)
14583		(17-)		(17-)
14985		(18 ⁺)		(18 ⁺)
17956		(20+)		(20+)

J π of 58 Fe(g.s.) is 0⁺. a J π =2⁺ not consistent with logft in β - decay.

⁶⁰Fe Levels

Cross Reference (XREF) Flags

		$\begin{array}{rcr} A & {}^{60}Mn \not \\ B & {}^{60}Mn \not \\ C & {}^{14}C({}^{48}) \\ D & {}^{58}Fe(t,) \end{array}$	3 ⁻ decay (1.77 s) 3 ⁻ decay (0.28 s) Ca,2nγ) p)	E F G H	58 Fe(t,p γ) 64 Ni(d, ⁶ Li) 48 Ca(15 N,2np γ),(18 O,2n $\alpha\gamma$) 58 Fe(α , 2 He)	I J K L	64 Ni(3 He, 7 Be) 62 Ni(14 C, 16 O) 208 Pb(64 Ni,X γ) 64 Ni(238 U,X)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		0	Commo	ents
0.0 ^{<i>a</i>}	0+	2.62×10 ⁶ y 4	ABCDEFGHIJKL	$\%\beta^{-}$ $T_{1/2}$ of at $T_{1/2}$ ra $T_{1/2}$ nu $T_{1/2}$ m	=100 : From 2009Ru08. Specific act 60 Fe in the source, its isotopic oms in the source. : Other values: 1.49×10^6 y 27. dioisotope concentration (1984 : a larger sample material and umber of atoms suggests the res : The half-life of 60 Fe plays a atters.	ivity i comp , speci Ku28) a mor sult in promi	measurement. Measured activity position, and the number of iron ific activity measurement and). 3×10^5 y (1957Ro54). e accurate determination of the 2009Ru08 is the most accurate. nent role in various astrophysical
823.83 ^{<i>a</i>} 9	2+	7.9 ps 8	ABCDEFG IJKL	$T_{1/2}$: From 2010Lj01 in ⁶⁴ Ni(²³⁸ U 977Wa10).	,X). C	Other value: 8.0 ps 15
1974.0 5	0+		B DE	(-			
2114.60^a 12	4+	0.83 ps 21	A CDEFG I K				

_		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

 $Q(\beta^{-})=-5738 \ 13$; S(n)=8984.1 12; S(p)=6013.9 24; Q(α)=3271.21 3 2012Wa38

Additional information 1.

Other reactions: 1991Fl03: spin dependence of GDR in Gd isotopes.

There are problems in reconciling log ft values from ¹⁴⁸Tb ε decay (2.20 min) with ΔJ^{π} of the transitions. More data are needed to clarify these problems.

148Gd Levels

Cross Reference (XREF) Flags

			A 148,	Tb ε decay (60 min) D ¹⁴⁸ Gd(p,p')
			B ¹⁴⁸	Th ε decay (2.20 min) E (HI,xn γ)
			C ¹⁵²]	Dy α decay F (HI,xn γ):SD
E(level) [†]	J#‡	T _{1/2} #	XREF	Comments
0.0@	0+	71.1 y 12	ABCDE	%α=100
				$T_{1/2}$: weighted average of values (in y): 74.6 <i>30</i> (1981Pr06), and 70.9 <i>10</i> (2003Fu10, preliminary result after two year measurement). Others: 97.5 y <i>65</i> (1966Fr11), 84 y <i>9</i> (1962Si14), see also 1953Ra02.
784.433 [@] 15	2+	4.2 ps 12	AB DE	J^{π} : L(p,p')=2.
1273.492 ^{&} 18	3-	34.7 ps 21	AB DE	J^{π} : L(p,p')=3.
1416.378 [@] 20	4+	8.1 ps 24	AB DE	$J^{\pi}: L(p,p')=4.$
1810.98 [@] 7	6+	178 ps 20	B DE	J^{π} : L(p,p')=6. log ft=6.3 from (9) ⁺ to this level is very low.
1834.59 5	2+,3+		A	J^{π} : from $\gamma(\theta)$ of oriented nuclei in ε decay (60 min).
1863.445 24	2+		A D	J^{π} : L(p,p')=2.
1912.97 [∞] 6	4-		AB E	J^{π} : γ to 3^{-} is M1, no γ to 2^{+} .
2082.11 ^{<i>a</i>} 6	5-	2.6 ps 13	AB DE	J^{π} : L(p,p')=5.
2188.67 4	2-		A D	J'': L(p,p')=2, $J''_{n-1} L(p,p')=2,$
2310 97 5	2+		A D	J : L(p,p) = 3. $I^{\pi} : L(p,p') = 2$
2424.10 9	3 ⁺ ,4 ⁺		A	J^{π} : from $\gamma(\theta)$ of oriented nuclei in ε decay (60 min); π from M1+E2 γ to 4 ⁺ , 1416.
2503.70 6	$(1,2,3)^{-}$		A	J^{π} : γ to 3^{-} is E2,M1 and γ to 2^{+} .
2505.80 4	3-		A D	J^{π} : γ to 4 ⁺ is E1; γ to 2 ⁺ ; seen in (p,p').
2522.04 11	4+		A D	J^{n} : L(p,p')=4.
2563.81 ^{&} 9	7-	21.3 ps 30	ΒE	J^{π} : γ to 5 ⁻ $\Delta J=2$, E2; γ to 6 ⁺ is E1.
2566.82^{∞} 18	6-		E	
2614.59 5	2+		A D	J^{n} : L(p,p')=2.
2032.05° 0	5 9+	12.0 28	A DE	J^{T} : L(p,p)=5.
2693.35 10	8	13.2 ps 28	B DE	$J^{\prime\prime}$: γ to 6' is $\Delta J=2$, E2; no γ to $J<6$.
2694.67 13	9-	16.6 ns 3	ΒE	$\mu = -0.162 \ 18 \ (20058t24, 1987Da27)$
				Q=1.015 (20035124,1962Ha22) I^{π} : χ to 7^{-} is F2 χ to 6^{+} is F3 (from $\chi(\theta)$ and RUL)
				$T_{1/2}$: weighted average of 17.5 ns <i>10</i> (1990Pi17), 17.5 ns <i>10</i> (1984Lu09), 16.5 <i>3</i> (1979Ha15), 17.3 ns <i>20</i> (1973Kr10), 16.3 ns <i>9</i> (1972HaXQ), and 16.7 ns <i>9</i> (1971HaXD).

 μ : Other: -0.252 81 (1979Ha15); both 1987Da27 and 1979Ha15 used the time

Adopted Levels, Gammas History Type Author Citation Literature Cutoff Date Full Evaluation Huang Xiaolong and Kang Mengxiao NDS 121, 395 (2014) 1-Mar-2014 $Q(\beta^{-}) = -2845\ 26;\ S(n) = 6887\ 23;\ S(p) = 6075\ 23;\ Q(\alpha) = 2277\ 24$ 2012Wa38 ¹⁹⁵Hg Levels Cross Reference (XREF) Flags ¹⁹⁵Hg IT decay (41.6 h) A D $(HI, xn\gamma)$ ¹⁹⁵Tl ε decay В E (HI,xny):SD ¹⁹⁶Hg(p,d) C TTT E(level)[†] $T_{1/2}$ XREF Comments 0.0 $1/2^{-}$ 10.53 h 3 ABC $\%\varepsilon + \%\beta^+ = 100$ μ=+0.5414749 14 (1973Re04,2011StZZ) J^{π} : optical double resonance and μ analysis (1978LeZA, 1976Fu06). $T_{1/2}$: From 2001Li17 (weighted average of six $\gamma(t)$ measurements). Others: 9.5 h 5 (1952Hu54), 11.5 h 10 (1973Vi09). μ : From optical pumping, nuclear magnetic resonance (1973Re04); ¹⁹⁹Hg standard. Others: +0.541475 1 (1978LeZA), +0.542272 34 (1978LeZA, calculated with the use of hyperfine-structure ratio relative to ¹⁹⁹Hg), +0.538 (1976Fu06). For the μ calculation see 1985Kr14. J^{π} : γ to $1/2^{-}$ is M1+E2. 37.083 19 3/2-<50 ps ABC T_{1/2}: from $\gamma\gamma(t)$ measurement in ¹⁹⁵Hg IT decay (1973Vi09). J^{π} : γ to $1/2^-$ is E2 and γ from $13/2^+$ is M4. T_{1/2}: from $\gamma\gamma(t)$ measurement in ¹⁹⁵Hg IT decay (1969Ba42). Other: 0.72 ns 3 53.289 20 5/2-ABC 0.79 ns 7 (1961Re12). 176.07& 4 %IT=54.2 20; %ε+%β⁺=45.8 20 $13/2^{+}$ 41.6 h 8 ABCD $\mu = -1.0446473 \ 26 \ (1973 \text{Re}04, 2011 \text{St}ZZ)$ Q=+1.08 11 (1986UI02,2011StZZ) μ : From optical pumping, nuclear magnetic resonance (1973Re04), ¹⁹⁹Hg standard. Others: -1.044647 3 (1978LeZA), -1.05565 13 (1978LeZA, calculated with the hyperfine-structure ratio relative to ¹⁹⁹Hg standard), -1.038 (1976Fu06). Q: ²⁰¹Hg standard. Other: +1.27 11 (1978LeZA), +1.2 (1976Fu06). For the O calculation see 1985Kr14. J^{π} : optical double resonance and μ analysis (1978LeZA, 1976Fu06). $T_{1/2}$: from $\gamma(t)$ measurement (1973Vi09). Others: 43 h 5 (1961Ju06), 42 h 3 (1954Br56), 40.0 h 5 (1953Hu44), and 38.0 h (1951Mo55). For the suggested configuration, see 1986AgZZ. 279.203 24 BC J^{π} : γ to $1/2^{-}$ is M1+E2. 3/2-3/2-,5/2-BC J^{π} : γ to $1/2^{-}$ is E2. 300.55 3 J^{π} : 373-, 844-, 847- and 1304-keV levels are low-spin members of the 373.17 11 $(9/2^+)$ B $13/2^+$ band; $(3/2^+)$ to $5/2^+$ to $9/2^+$ to $13/2^+$ and $(3/2^+)$ to $7/2^+$ to $9/2^+$ to $13/2^+$ are γ -ray cascades of the 456-471-197 and 426-501-197 keV; the energies of the transitions in these levels are close to the analogous cascades in $^{197}\mathrm{Hg}$ (1977Ke18,1977ZgZZ); E2 of the 197 and 471-keV γ 's are consistent (1978Go15). J^{π} : γ to $5/2^{-}$ is M1. 3/2⁻,5/2⁻,7/2⁻ (1/2⁻ to 7/2⁻) 410.31 4 В J^{π} : (E2) 407 γ to this level from 3/2⁻. В 422.51 10 547.06 & 11 J^{π} : γ to $13/2^+$ is stretched E2 and decoupled $i13/2^+$ band member. $17/2^{+}$ D J^{π} : γ to $3/2^{-}$ is M1 and log ft=7.29 from $1/2^{+}$; (M1+E2) γ to $5/2^{-}$ rules 595.48 4 В $(3/2)^{-}$ out 1/2⁻.

				Adopt	ted Levels, Gammas		
		Type Full Evaluati	on Coral M	hor . Baglin	History Citation NDS 109, 2257 (2008)	Literature 15-A	e Cutoff Date ug-2008
$Q(\beta^{-}) = -2238$ Note: Current $Q(\beta^{-}) = -2239$ For isotope shi	5; S(n)= evaluation 6; S(n)= ift data,	=7872.8 <i>15</i> ; S(p)=9 on has used the foll =7872.9 <i>23</i> ; S(p)=9 see 1995Ke04.	094.8 18; Q(α lowing Q record 093.5 23; Q(α)=-5520. [.] d.)=-5519.	2 <i>14</i> 2012Wa38 4 <i>23</i> 2003Au03		
					⁸¹ Kr Levels		
				Cross Re	eference (XREF) Flags		
		A 80 Se(α ,3ny B 78 Se(α ,ny) C 81 Br(p,ny) D 81 Rb ε dec	r) ray (4.572 h)	E 81 F 80 G 73 H 81	Rb ε decay (30.5 min) Kr(d,p), (pol d,p) Ge(¹¹ B,p2n γ), ⁷⁴ Ge(¹⁰ B,p Br(³ He,t), (³ He,t γ)	Ι J 2nγ)	⁸¹ Kr IT decay ⁸¹ Br(p,n)
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF			Commen	ts
0.0 [@]	7/2+	2.29×10 ⁵ y <i>11</i>	ABCDE GHI		00 908 2; Q=+0.644 4 m collinear LASER fast-ber r standard, diamagnetic con 03Ca41; LASER resonance 629 13 (1993Ca41; LASE ³ Kr)=0.253 5 (1989Ra17)) uning their value of 0.259 inear LASER fast-beam sp lectric-field gradient and th $(^{86}$ Kr, 81 Kr)=+0.099 (1995)), 0.018 (including system $(^{80}$ Kr, 81 Kr)=-0.015 8 (19) γ from $1/2^-$; log $f^{4u}t=11$. 2.13×10 ⁵ y +16-26 from Br)=0.618 19 and (adopted 50Re54).	eam spectro rrection inc e fluorescen R resonanc A djusted b <i>I</i> for Q(⁸³] ectroscopy he Sternhein 5Ke04); unc atic uncerta 96Li25; sta 0 for ε dec 1964Ea05, d) ε K=0.84	escopy (1995Ke04); relative to cluded. Other: $-0.909 \ 4$ are spectroscopy, ⁸³ Kr standard). the fluorescence spectroscopy, if by 2001Ke15 to $+0.644 \ 4$ Kr). Other: $+0.647$ (1995Ke04, b); uncertainty includes uncertainty mer correction. the sertainty is 0.004 (statistical ainties), 0.034 (total uncertainty). tistical uncertainty only). ay to $3/2^{-}$. adjusted by evaluator assuming 473 ; other: 2.1×10^5 y 5
49.57 [®] 3	9/2+	3.9 ns 4	ABCDEFGH	J^{π} : (po $T_{1/2}$: 1 (197) May instead	bl d,p); L(d,p)=4. from centroid shift of time 79To08)from $n-\gamma(t)$ in (p,n) γ result from the use of Co ead of the photopeak when ribution.	curve in (α γ); 1984Do ompton-scat determinin	$(x,n\gamma)$. Other: 8.4 ns <i>10</i> 02 suggest that discrepancy tered photons by 1979To08 ng their 50 γ prompt time
190.64 ^{&} 4	1/2-	13.10 s <i>3</i>	ABCDEF HIJ	%IT=9 μ =+0. % ε fro % ³ Kt $\Delta < r^{2} >$ only $\Delta < r^{2} >$ $< r^{2} > ^{1/}$ J ^{π} : fro T _{1/2} : v 198 (198	99.9975 4; $\% \varepsilon = 2.5 \times 10^{-3} \times 586 2$ om ⁸¹ Kr ε decay (13.10 s). m collinear LASER fast-bar r standard, diamagnetic con (⁸⁶ Kr, ⁸¹ Kr)=+0.080 (1995 r), 0.022 (including system (⁸⁰ Kr, ⁸¹ Kr)=-0.034 <i>11</i> (14) (²⁰ (CHARGE)=4.1953 <i>21</i> (20) m (pol d,p); L(d,p)=1. weighted average of 13.10 7Da06. Others: 13 s 2 (1943) 36A111), 13.4 s 7 (2005Ka)	4 eam spectro rrection inc iKe04); unc atic uncerta 996Li25; st 2004An14). s 2 from 1 40Cr06), 12 39).	oscopy (1995Ke04); relative to Juded. certainty is 0.008 (statistical ainties), 0.041 (total uncertainty). tatistical uncertainty only). 987Lo06 and 13.32 s 15 from 3 s 1 (1969Ha03), 12.8 s 3

				ted Der			
		Type Full Evaluation	Author F. G. Kondev		tory <u>Citation</u> <u>L</u> 101, 521 (2004)	iteratura 1-Fe	e Cutoff Date eb-2004
$Q(\beta^{-}) = -2706 6$ Note: Current ev	; $S(n)=6731.0$ valuation has	66 <i>11</i> ; S(p)=6713.0 used the following	07 21; $Q(\alpha)=146$ Q record.	8.1 <i>12</i>	2012Wa38		
$Q(\beta^{-}) = -2708 \ 7$; $S(n) = 6731.0$	67 <i>11</i> ; S(p)=6713.0	19 21; $Q(\alpha) = 146$	8.3 12	2003Au03		
				²⁰⁵ Pb	Levels		
			Cross R	eference	e (XREF) Flags		
		A 205 Pb IT deca B 205 Bi ε decay C 209 Po α deca D 204 Hg(α 3px)	ay (5.55 ms) G / H y I	204 204 204 205	Pb(n,γ) E=1.95 keV Pb(d,p) Pb(d,pγ) Pb(d,d')	M N O P	206 Pb(3 He, α) 207 Pb(p,t) 209 Bi(π^{-} ,4n γ) 206 Pb(γ n)
		$E = \frac{204}{10} Hg(^9Be,xr)$	iγ) K	206	Pb(p,d)	Q	206 Pb(n,2n γ)
		F 204 Pb(n, γ) E=	=thermal L	206	Pb(d,t)		
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF				Comments
0.0^d	5/2-	1.73×10 ⁷ y 7	ABCDEFGHIJKLN	1NOPQ	%ε=100 J ^π : L=3 in ²⁰⁴ Pb(d T _{1/2} : Using T _{1/2} (εl 1958Wi40 data a theoretical εL/(ε Q+=50.5 keV 5 μ =+0.7117 4 (1986 fluorescence spec technique. Other (1987Ba85)	l,p) and L)=2.89 and ω (L + β^+)=0 (2003A (2003A 5An06,1 ctroscop	²⁰⁶ Pb(p,d), μ. ×10 ⁷ y 3, deduced from the)=0.379 15 (1996Sc04), and .5989 14, deduced using u03). 989Ra17), using the laser induced by in thermal atomic beam 46 8 (1982Th05) and 0.704 5
2.329 ^e 7	1/2-	24.2 µs 4	BC FGHI KL	0	Q=+0.226 37 (198 fluorescence spectre technique. Other $\Delta < r^2 > (^{208}\text{Pb}, ^{205}\text{Pb}) - 0.1967$ 16 (1986 J ^{π} : L=1 in $^{206}\text{Pb}(p)$	6An06, 3 ctroscop rs: 0.2 4 0)=-0.20 6An06), 0, d) and 3	1989Ra17), using the laser induced by in thermal atomic beam (1987Ba85). 032 35 (1982Th05) and 204 Pb(d,p); 2.328 γ E2 to 5/2 ⁻ .
262 833 ^f 25	3/2-		BC FGHTJKL	IN P	$I_{1/2}$: From 20 Po a I^{π} : 260.50 γ M1(+F	α decay E2) to 1.	(1994Kr^{11}) . $/2^{-}: 262.8 \text{v} \text{ M1}(+\text{E2}) \text{ to } 5/2^{-}:$
202.005 20	5/2		20 1011251121		L=1 in ²⁰⁶ Pb(p,c	d) and 2°	⁰⁴ Pb(d,p).
576.19 ^f 3	3/2-		BC FGHIJKL	N PQ	XREF: C(586)N(58 J ^π : 313.43γ M1(+H	(580) P(580) P	0). $(2^{-}; 573.85\gamma \text{ M1}+\text{E2 to } 1/2^{-};$ (206 Pb(n,d)) and $(204 Pb(d,n))$
703.427 ^g 21	7/2-		AB DE HIJK	NO Q	J^{π} : 127.24 γ to 3/2 ⁻ from 13/2 ⁺ L=2	; 703.4 in ²⁰⁵ P	4γ M1+E2 to 5/2 ⁻ ; 310.3 γ E3 b(d,d').
761.43 ^{<i>d</i>} 4	5/2-		BC F HIJKL	NO	XREF: C(790)L(75 J ^π : 185.22γ M1(+H 759.10γ E2 to 1)	50). E2) to 3, /2 ⁻ ; L=	$/2^-$; 498.40 γ (M1) to 3/2 ⁻ ; 3 in ²⁰⁴ Pb(d,p) and ²⁰⁶ Pb(p,d).
803.38 ^f 6	$(1/2, 3/2)^{-}$		FGHIJKL	N	J^{π} : 803.34 γ to 5/2-	-, 540.6	γ and 226.9 γ to 3/2 ⁻ ; L=1 in
987.63 ^g 3	9/2-		AB DE HIJKL	NO Q	207 Pb(d,p). XREF: L(980)N(99 J ^π : 284.15γ M1(+H	93). E2) to 7/	/2 ⁻ ; 987.66γ E2 to 5/2 ⁻ ; L=(4) in
996.48 ^e 18	(1/2,3/2)-		FH K		XREF: H(999). J^{π} : L=1 in ²⁰⁴ Pb(d	,p) and	²⁰⁶ Pb(p,d).

Adopted Levels, Gammas										
	Type Full Evaluation	A J. Chen [#] ar	H uthor nd F. G. Kondev	listory ND	Citation S 126, 373 (2015)	Literature Cutoff Date 30-Sep-2013				
$Q(\beta^{-}) = -3483 5$; $S(n) = 6967.7 19$; $S(p) = 4784.8 24$; $Q(\alpha) = 4979.2 14 2012$ Wa38 Additional information 1.										
			²⁰⁹ P	o Leve	ls					
Additional infor	mation 2.									
			Cross Referen	nce (XI	(EF) Flags					
		A 209 B 213 C 204 D 207	At ε decay Rn α decay Hg(⁹ Be,4n γ) Pb(α ,2n γ)	E 2 F 2 G 2 H 2	²⁰⁸ Pb(α,3nγ) ²⁰⁹ Bi(p,n),(p,np') IA ²⁰⁹ Bi(d,2nγ) ²¹⁰ Po(d,t),(p,d)	AS				
E(level)	$J^{\pi^{\dagger}}$ $T_{1/2}$	XREF			Corr	nments				
0.0 1/	124 y 3	ABCDE GH	H $%\alpha$ =99.546 7; %ε+%β ⁺ =0.454 7 μ=0.68 8 (1966Ch27) J ^π : optical spectroscopy (1976Fu06), L(d,t)=1. T _{1/2} : Weighted average of 125.2 y 33 in 2014Co16, based on 30 datasets measured over a period of 20.7 years using a liquid scintillator technique (superseded 128 y 7 by the same collaboration (2007Co07)) and 120 y 6 in 2015Po03, based on measurements of two sources measured for 359 and 369 days. Other: 102 y 5 from ²⁰⁹ Po/ ²⁰⁸ Po mass and activity ratios in 1956An05 and the presently adopted T _{1/2} (²⁰⁸ Po)=2.898 y 2. Authors in 1956An05 obtained T _{1/2} =103 y using T _{1/2} (²⁰⁸ Po)=2.93 y 3. %α,%ε+%β ⁺ : from measured %I(ε)=0.454 7 and %I(ε+β)+%I(α)=100 (1996Sc24). Others: %α=99.52 4 (1989Ma05) and 99.74 (1966Ha29). Additional information 3. μ: from optical spectroscopy (1966Ch27). A value of≈+0.77 quoted by 1989Ra17. Other: 0.61 5 from 1991Ko32 by atomic beam laser spectroscopy. The rms charge radius (<r<sup>2>)^{1/2}: 2013Se03 gives δv(²⁰⁹Po)=-6.75 GHz 10, δ(r²)(²⁰⁹Po, ²¹⁰Po)=-0.0813 fm² 10 and $\langle \beta_2^2 \rangle^{1/2}$=0.09. The systematic uncertainties from electronic factor and mass-shift calculations not isoluded</r<sup>							
544.98 8 5/	70 ps 20	AB DE GH	J^{π} : L(d,t)=3, 5 T _{1/2} : from (79 configuration=	$v(3p_{1/2})$ (45.0 γ I (0.2 γ)(5) $v(2f_{5/2})$	$7 = \frac{1}{22}$ to $1/2^{-}$. (45.0γ)(Δt) in 209 At $(-1)^{-1}$.	t $\varepsilon + \beta^+$ decay (1971Al31).				
854.35 <i>15</i> 3/ 1175.34 8 5/ 1213.7 <i>11</i> 1/ 1326 85 9 9/	/2- /2- /2-,3/2- /2-	A H A H A H	J^{π} : L(d,t)=1, 5 J^{π} : L(d,t)=3; 1 J^{π} : L(d,t)=1. I^{π} : 781 9× F2	54.6γ I 175.3γ	32 from 7/2 ⁻ . E2 to 1/2 ⁻ .	V level				
1408.90 9 7/	2-	A	configuration= J^{π} : 233.6 γ M1	$\pi(^{1}H_{9/2})$ (+E2) 1	$(p_{1/2})^{+2} \otimes \nu(p_{1/2})^{-1}$. to 5/2 ⁻ , 903.0 γ E1((+M2) from 9/2 ⁺ .				

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

 $Q(\beta^{-})=32.5$; S(n)=6485.9; S(p)=5146.5; $Q(\alpha)=2287.5$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=30.4$; S(n)=6487.9; S(p)=5149.4; $Q(\alpha)=2285.5$ 2003Au03,2009AuZZ

Other reactions:

 181 Ta(α ,n), E α =12, 13, 13.9 MeV (1998Sc36). The observed 184 Re yields showed large discrepancies for different irradiation

times. authors interpreted this as evidence for the existence of an otherwise unknown isomer of 184 Re with $T_{1/2} \approx 2$ h.

 $W(^{3}He,t)$, E=200 MeV (1991Ja04): natural W target; unresolved triton groups to IAS from constituent isotopes dominated by that

for α =184; deduced Q(IAS)=16904 16 and Coulomb displacement energy=17668 16 for E=15404 16 IAS.

¹⁸⁴Re Levels

Cross Reference (XREF) Flags

A	¹⁸⁴ Re	IT	decay	(169 d	I)
				\	

- B 185 Re(d,t),(³He, α)
- C $^{183}W(^{3}He,d),(\alpha,t)$
- D 180 Hf(⁷Li,3n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0^{a}	3(-)	35.4 d 7	ABCD	$\%\varepsilon + \%\beta^+ = 100$
				$\mu = +2.535$ (1981Ha22)
				Q = +2.8 2
				μ . from 198111222, NMR on oriented nuclei. Others. 2.55 9 (1975Hu00), 2.48 12 (1973Kr01) from static nuclear orientation.
				Q: from 1983Ha52, static nuclear orientation. Other: 1981Er01 +3.3 3 (1981Er01;
				nuclear orientation).
				J^{π} : μ consistent with J=3 only; parity from Nilsson assignment.
				$T_{1/2}$: from 2006Ha51; source produced by ${}^{103}\text{Re}(\gamma,n)$ reaction which should not
				excite the 109 d isomer. Others: $1900B007$ (38 d 7), $1902D204$ (38.0 d 3), $1963I003$ (33 d 3), $1965B106$ (34 d 5); some or all of these measurements May
				have been perturbed by presence of the then-unknown 169 d isomer.
$56^k 3$	$(1^{-})^{\&}$		В	
74.01 ^f 16	(2^{-})		BCD	
104.7395 ^a 14	4 ⁽⁻⁾		AB D	J^{π} : M4-M1+E2 cascade from the 188 level to the 104 level to the 3 ⁽⁻⁾ g.s., and crossover from 188 to g.s. with mult=E3 or E4 or E5.
141.92 ^{<i>f</i>} 15	(3 ⁻)		BCD	J^{π} : probable doublet based on rotational band predictions. No peak broadening was observed.
188.0463 ⁱ 17	8(+)	169 d 8	AB	%ε=25.5 8; %IT=74.5 8
				$\mu = (+)2.88 \ 10$
				μ : from nuclear orientation; weighted average of 2.86 13 (1973Hu06) and 2.90 15
				(1975K101). T _{1/2} : from 1963Io03 Others: 1965B106 (166 d 12) 1964Ha06 (160 d)
				J^{π} : see comment on 104.7 level.
237.17 ^a 10	5(-)		ВD	J^{π} : D intraband 133 γ to 4 ⁽⁻⁾ 105; band assignment.
242.15 ^f 18	(4 ⁻)		ΒD	J^{π} : 100 γ to (3 ⁻) 142; band assignment.
256.60 ^k 20	(3 ⁻)		ВD	
311.62 ^b 11	(4 ⁻)	<6 ns	ΒD	J^{π} : gammas to $4^{(-)}$ 105 and $3^{(-)}$ g.s.; band assignment.
347.56 ^d 13	(6 ⁻)	8.1 ns 8	ВD	J^{π} : M1 110 γ to 5 ⁽⁻⁾ 237; 243 γ to 4 ⁽⁻⁾ 105; band assignment.
368.81 ^f 18	(5 ⁻)		ВD	J^{π} : intraband D 127 γ to (4 ⁻) 242; band assignment.

Adopted Levels, Gammas History Literature Cutoff Date Type Author Citation NDS 109, 943 (2008) Full Evaluation D. De Frenne and A. Negret 1-May-2007 $Q(\beta^{-})=39.40\ 22$; S(n)=8461 6; S(p)=1.132×10⁴ 4; Q(α)=-5177 10 2012Wa38 Note: Current evaluation has used the following Q record. $Q(\beta^{-})=39.40\ 21$; $S(n)=8466\ 7$; $S(p)=11320\ 60$; $Q(\alpha)=-5190\ 22$ 2003Au03 106Ru Levels Cross Reference (XREF) Flags 104 Ru(18 O, 16 O γ) ¹⁰⁶Tc β^{-} decay (35.6 s) A D ¹⁰⁴Ru(t,p) В E $(HI, xn\gamma)$ 104 Ru(t,p γ) ²⁵²Cf SF decay C F E(level) $T_{1/2}$ XREF Comments 0.0# 371.8 d 18 ABCDEF $\%\beta^{-}=100$ T_{1/2}: From the evaluation of 2004Wo02. Others: 373.59 d (1980Ho17) 15, 371.63 d 17 (1977DeYO), 371.7 d 15 (1983Wa26), 366.5 d 8 (1956Sc87), 372 d 4 (1957Me47), 365.8 d 17 (1960Ea02), 371 d 1 (1961Wy01), 368.0 d 18 (1965Fl02). 270.07# 4 2+ 0.20 ns 3 ABCDEF g=+0.3 1 J^{π} : L=2 (t,p). T1/2: From time-integral perturbed angular correlations with Gammasphere in connection with a 252 Cf SF source (2004Sm04,2005Sm08). T_{1/2} calculated assuming the same transition quadrupole moment as ¹⁰⁸Ru. Other: 0.26 ns 7 (1995Sc24). g: From ²⁵²Cf SF decay (2004Sm04,2005Sm08). 714.69# 10 (4^{+}) AB DE J^{π} : L=(4) in (t,p) and (444 γ)(270 γ)(θ) data consistent with 4-2-0 cascade. 792.31@ 4 2+ J^{π} : L=2 (t,p). AR DE 990.62 5 0^{+} ABC J^{π} : L(t,p)=0. J^{π} : suggested by 1980Su01 from similar decay properties of this level compared 1091.55@ 7 A DE (3^{+}) to the 3⁺ levels in neighboring nuclei: ¹⁰²Ru, ¹⁰⁴Ru, ¹⁰⁸Ru. Consistent with $(821\gamma)(270\gamma)(\theta)$ data. 1295.8# 2 J^{π} : suggested from DWBA calculations in (¹⁸O, ¹⁶O). (6^{+}) DE 1306.8@ E (4^{+}) 1392.21 7 2+ А J^{π} : deexcites to 0⁺ and 4⁺ states. (1122 γ)(270 γ)(θ) data consistent with 2-2-0 cascade. 1641.1@ (5^{+}) E 1688.41 21 A 1774.37 8 J^{π} : from L=(2) in (t,p). Consistent with J=2,3,4 suggestion from (2^{+}) AB $(1504\gamma)(270\gamma)(\theta).$ J^{π} : from L=(2) in (t,p). Consistent with $(1615\gamma)(270\gamma)(\theta)$ data suggesting 1885.61 9 (2^{+}) AB J=1,2,3. 1907.8@ (6^{+}) В Ε 1973.4# 4 DE XREF: E(1975). (8^{+}) J^{π} : from agreement with DWBA calculations in (¹⁸O,¹⁶O). В 2151 8 J^{π} : (1969 γ)(270 γ)(θ) suggests J=1. Consistent with predominant deexcitation to 2239.40 7 (1)A $0^+, 2^+$ states. 2284.1@ (7^{+}) E (4^{+}) В 2367 5 L(t,p)=(4).

Adopted Levels, Gammas History Type Author Citation Literature Cutoff Date Full Evaluation Zoltan Elekes and Janos Timar NDS 129, 191 (2015) 28-Feb-2015 $Q(\beta^{-})=4363 \ 19$; $S(n)=6002 \ 20$; $S(p)=8448 \ 22$; $Q(\alpha)=-619\times10^{1} \ 4$ 2012Wa38 128Sb Levels Cross Reference (XREF) Flags 128 Sn β^{-} decay (59.07 min) A ¹²⁸Sb IT decay (10.4 min) R E(level) $T_{1/2}$ XREF Comments 0.0 9.05 h 4 8-AB $\%\beta^{-}=100$ μ=1.31 19 (1989Ra17) μ : from static nuclear orientation (1972Kr15). J^{π} : J=8 from atomic-beam magnetic resonance (1974Ek01). ¹²⁸Sb g.s. μ agrees with theoretical value of 1.3 for configuration= $((\pi 1g_{7/2})(\nu^1 H_{11/2}))8^{-1}$ (1972Kr15). T_{1/2}: from weighted average of 9.06 h 3 (1967Ha27), 8.9 h 2 (1962Dr01), 9.9 h 5 (1962Ha16), 8.6 h 2 (1962Uh01), 9.6 h 3 (1965Br34), 8.6 h 6 (1971Ki15), 9.03 h 9 (1972Pa13). Other: 9.6 h (1967Ha27). μ : from $\gamma(\theta)$ in polarized ¹²⁸Sb (1972Kr15). 5+‡ 0.0 + x10.41 min 18 %β⁻=96.4 10; %IT=3.6 10 AB E(level): energy difference between this level and ground state is estimated to be ≤ 20 keV from T_{1/2} systematics for E3 transitions of even Sb isotopes (1975Im01). The fact that no K x ray of ¹²⁸Sb is found in IT decay partially supports the above result. T_{1/2}: weighted average of 10.3 min 3 (1955Fr11), 10.8 min 2 (1962De11), 10.1 min 2 (1962Dr01), 9.9 min 5 (1962Ha16), 11.0 min 5 (1962Uh01), 9 min 1 (1966To02). 4+‡ 45.70+x 20 A 3+‡ 77.8+x 3 A J^{π} : γ from 1⁺ and M1 γ to 3⁺. 152.7+x 3 $(2^+, 3^+)$ A 482.4+x 3 $(2,3)^+$ A J^{π} : γ from 1⁺ and γ to 4⁺. 1+ J^{π} : log *ft*=4.4 from 0⁺. 635.2+x 3 A 751.6+x? E(level): cascade order of 80.9y and 115.9y has not been determined in ¹²⁸Sn A β^- decay. 1+ J^{π} : log ft=4.6 from 0⁺. 833.0+x A

[†] E(levels) are adopted from 128 Sn β^{-} decay.

[‡] J(0.0+x) is 5,6,7 from log ft=6.0 of β^- decay to 6⁺. Three-step γ -cascade relation, 557.3 γ -32.1 γ (M1)–45.7 γ (M1) between 635.1+x 1⁺ and 0.0+x establishes J^{π}(0.0+x)=5⁺, J^{π}(45.7+x)=4⁺, and J^{π}(77.8+x)=3⁺ as the most likely spin sequence.

v(1	28Sb)
11	00,

E _i (level)	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.	α ^{&}	Comments
0.0+x	5+	(<20.0)		0.0 8-	[E3]		E_{γ} ,Mult.: expected E3 from ΔJ^{π} . Energy difference between this level and g.s. was estimated to be ≤ 20 keV from $T_{1/2}$ systematics for E3 transitions of even Sb isotopes (1975Im01).
45.70+x	4+	45.7 2	100	0.0+x 5 ⁺	M1§	5.94 12	$\alpha(K)=5.11 \ 10; \ \alpha(L)=0.665 \ 13; \ \alpha(M)=0.132 \ 3; \ \alpha(N)=0.0254 \ 5; \ \alpha(O)=0.00249 \ 5$

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 135, 193 (2016)	31-May-2016

 $Q(\beta^{-})=150.6 \ 13; \ S(n)=6962.83 \ 13; \ S(p)=10389 \ 10; \ Q(\alpha)=-6485.38 \ 23 \ 2012Wa38$

S(2n)=17460.57 22, S(2p)=19282.50 23 (2012Wa38).

1949PaZZ: ⁷⁹Se separated from fission fragments and measured half-life. A 3.9-min isomer in ⁷⁹Se identified by 1950Fl62.

There are 20 neutron resonances from 0.38 to 40.5 keV, with excitation energies from 6963 to 7003 keV. See 78 Se(n, γ):resonances dataset for energies and parameters.

Recent nuclear structure theory references (levels, J, π, transition probabilities, etc.): 2015Ka46, 2013Ku23, 2008Yo07, 1993Do17, 1988Ya01.

Additional information 1.

⁷⁹Se Levels

Band assignments are from 1998PrZX.

Cross Reference (XREF) Flags

5 4 1 ⁴	τπ÷	A B C D E	⁷⁹ As β ⁻ decay (9.01 min) ⁷⁹ Se IT decay (3.92 min) ⁷⁶ Ge(α ,n γ) ⁷⁷ Se(t,p) ⁷⁸ Se(n, γ) E=thermal	F ${}^{78}Se(n,\gamma) E=383 \text{ eV}$ K ${}^{80}Se(p,d)$ G ${}^{78}Se(n,\gamma):\text{resonances}$ L ${}^{80}Se(d,t)$ H ${}^{78}Se(pol d,p),(d,p)$ M ${}^{80}Se(\gamma,n)$ I ${}^{78}Se(d,p\gamma)$ J ${}^{78}Se(\alpha,{}^{3}\text{He})$
<u>E(level)</u>]/// 7/2+	<u>11/2"</u> 3.27×10 ⁵ y 28	ABC EF IJK $%\beta^-$ ABC EF IJK $%\beta^ \mu = Q = 4$ J^{π} : r pr μ, Q : pr μ, Q : $T_{1/2}$ sc pr q, Q : q	=100 1.018 <i>15</i> (1953Ha50,2014StZZ) 0.8 2 (1953Ha50,1954Bi40,1962Ko22, 2014StZZ,2013StZZ) nicrowave absorption (1953Ha50). L(p,d)=4 and E3 γ from 1/2 ⁻ . obable Configuration=($ ng_{22}^{-3}\rangle_{7/2+}$ (1953Ha50). from microwave absorption (1953Ha50,1954Bi40), recalculated by 62Ko22. : unweighted average of 2.78×10 ⁵ y <i>18</i> (2014Do20) (AMS and liquid intillation counting), 3.27×10 ⁵ y <i>8</i> (2010Jo09, inductively coupled asma optical emission spectrometry (ICP-OES) and liquid scintillation unting); 3.77×10 ⁵ y <i>19</i> (2007Bi01, inductively coupled plasma mass ectrometry (ICP-MS) and liquid scintillation counting (LSC)). In ¹¹ 4Do20, source was obtained from 57% enriched ⁷⁸ Se irradiated with utrons. In 2010Jo09 and 2007Bi01, source was obtained from chemica paration of ⁷⁹ Se fission fragment from reactor fuel. 2010Jo09 counted for contaminants present in the sample by γ counting whereas 07Bi01 and 2014Do20 did not seem to correct for the presence of ntaminants. The weighted average is 3.26×10^5 y <i>18</i> , but the reduced =7.2 as compared to the critical χ^2 =3.0 at 95% confidence level. e others: earlier values from the same research group as 2014Do20 ing different methods: 9.15×10 ⁴ y <i>45</i> (2010JiZZ, AMS spectrometry), 95×10 ⁵ y <i>38</i> (2002Ji07,2001Ji04,AMS (accelerator mass ectrometry); 2.80×10 ⁵ y <i>36</i> (2002He19, AMS and x-ray detection ethod), 2.9×10 ⁵ y <i>5</i> (revised by 2001Ji04 from 1.24×10 ⁵ y <i>17</i> 997Li44,chemical method); 4.8×10 ⁵ y <i>4</i> (1995Yu08,chemical method), rliest measurement: ≤6.5×10 ⁵ y (T _{1/21/2} ≤6.5×10 ⁴ y reported by

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Christian Ouellet, Balraj Singh	NDS 112, 2199 (2011)	24-Aug-2011

 $Q(\beta^{-})=227.2 \ 3; \ S(n)=9200.0 \ 3; \ S(p)=16412 \ 21; \ Q(\alpha)=-11483.9 \ 21 \ 2012Wa38$

Note: Current evaluation has used the following Q record.

S(2n)=15787.4 3, S(2p)=29764 13 (2011AuZZ).

Values in 2003Au03: $Q(\beta^{-})=224.31$ 19, S(n)=9203.22 3, S(p)=16416 20, S(2n)=15790.61 4, S(2p)=29748 8.

 $Q(\beta^{-})=227.2 \ 3; \ S(n)=9200.0 \ 3; \ S(p)=16412 \ 20; \ Q(\alpha)=-11483.9 \ 20$ 2011AuZZ

Mass measurements: 2003B117, 2009Kw02, 2009Sc09.

Mass deduced IMME analysis: 2010Ka30.

Strong absorption radius measurement: 1999Ai02:

2001Pa52: ${}^{31}Si(n,\gamma)$ E=thermal, measured prompt E γ =9201.798 keV 5 from the capture state to g.s. This gives S(n)=9203.218 keV 5.

Nuclear structure calculations: 2011Lu16, 2009Bo16, 2009Yo05, 2007Co22, 2004Kh16, 2002St30, 2000Ro06, 1997Ut01, 1987Co31.

³²Si Levels

Cross Reference (XREF) Flags

				A ${}^{32}\text{Al}\ \beta^-$ decay (33.0 ms) D Coulomb excitation B ${}^{30}\text{Si}(t,p)$ E ${}^{208}\text{Pb}({}^{37}\text{Cl},X)$ C ${}^{30}\text{Si}(t,p\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	0+	153 y 19	ABCDE	$\frac{9}{6}\beta^{-}=100$ $r_{0}^{2}=1.15$ fm ² 7 (1999Ai02 in Si(³² Si,X) at 44.78 MeV/nucleon). Also cross section measured. T _{1/2} : Weighted average (by LWM (limitation of statistical weights method) of 132 y <i>13</i> (1993Ch10, average of 128 y <i>20</i> and 134 y <i>16</i> from two different samples); 162 y <i>12</i> (1991Th06); 133 y 9 (1990Ho27, average of 135 y <i>10</i> , 132 y 9 and 136 <i>13</i> from three different samples); 172 y 4 (1986A110); 108 y <i>18</i> (1980E101) and 101 y <i>18</i> (1980Ku11). The LWM method increased the uncertainty of 4 y (1986A110) to 5.6 y, so that its relative weight did not exceed 50%. Normalized $\chi^{2}=5.8$. The values from indirect methods, described below, were not used in the averaging procedure because the accumulation rates (of ³² Si) in ice cores and sediments are not known well, and the cross sections in reactions are poorly known for determining yields that were used to estimate T _{1/2} in the pre-1970 measurements. See 1991Ku26 for a review of ³² Si half-life measurements and 2009Se07 for a discussion of oscillations in exponential decay of ³² Si in the measurement by 1986A110. Specific activity methods for half-life measurement: 1993Ch10: source from implantation of separated projectile (⁴⁰ Ar beam) fragments into an inert collector, decay equilibrium technique, two independent samples. Authors quote an average result as 132 y <i>13</i> . 1991Th06: source produced by ¹⁸ O(¹⁶ O,2p) reaction. ³² Si/ ³¹ Si abundance ratio using AMS (accelerator mass spectrometry), and β scintillation spectrometry. 1990Ho27: source from 3^{0} Si(t,p), AMS technique and β -scintillation spectrometry. 1980E101: source from Cl(p,X), AMS technique and β -scintillation spectrometry.

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

 $Q(\beta^{-})=-3879$ 6; S(n)=8416.3 29; S(p)=7018 4; Q(α)=2528.8 28 2012Wa38 Produced and identified by 1953Du21, irradiation of Nd target by 40 MeV ⁴He.

The ¹⁴⁶Sm scheme is built on the basis of data on ε decay and in-beam reaction study. It contains more than 210 levels and about

500 γ transitions. Six E γ energies differ greater than 3σ from corresponding level energy differences, they were not taken in to account in a least-square fitting. Band sequences are from 1995Ba57.

146Sm Levels

Cross Reference (XREF) Flags

А	146 Pm β^- decay	F	¹⁴⁴ Sm(t,p)
В	¹⁴⁶ Eu ε decay	G	¹⁴⁷ Sm(d,t)
С	150 Gd α decay	H	147 Sm(³ He, α)
D	$^{139}La(^{11}B,4n\gamma)$	I	¹⁴⁸ Sm(p,t)
E	$Nd(\alpha,xn\gamma)$		

E(level) ^{†‡}	J^{π}	$T_{1/2}^{\#}$	XREF	Comments
0.0 [@]	0+	6.8×10 ⁷ y 7	ABCDEFGHI	$\% \alpha = 100$ T _{1/2} : from 2012Ki16. Others: 5×10 ⁷ y (1953Du21), 7.4×10 ⁷ y 15
				(1964Nu02), 10.26×10 ⁷ y 48 (1966Fr11), 8.5×10 ⁷ y 12 (1963Fr06), 10.31×10 ⁷ y 45 (1987Me08).
				Observed α decay with E α =2455 4 (1987Me08), 2460 20 (1964Nu02), 2550 30 (1966Fr11), 2550 50 (1960Ma39, 1953Du21), retardation factor=0.34 (1993Bu09).
				Isotope shift, mean square radii differences (2013An02 (compilation nuclear radii of Z=0-96), 1999GaZX, 1990En01, 1986Al33).
747.174 [@] 11	2+	≤7.2 ps	AB DEFGHI	J ^{π} : 747.2 γ E2 to 0 ⁺ ; assigned to level sequence built on g.s., 0 ⁺ .
1380.301& 15	3-		AB DEf h	XREF: f(1387), h(1376).
				J^{π} : 633.1 γ E1 to 2 ⁺ ; direct population in ¹⁴⁶ Eu ε decay ($J\pi$ =4 ⁻); bandhead of one octupole phonon coupled level sequence.
1381.287 [@] 14	4+	≤9 ps	B DEfGhI	XREF: f(1387), h(1376).
				J^{π} : 634.1 γ E2 to 2 ⁺ ; direct population in ¹⁴⁶ Eu ε decay ($J\pi$ =4 ⁻); assigned to level sequence based on g.s.
1647.980 14	2+		B EFGHI	J^{π} : 1648.0 γ E2 to 0 ⁺ , 791.1 γ from 4 ⁺ .
1792 2			G	J^{π} : from L(d,t)=3,5.
1811.674 [@] 18	6+	0.09 ns +10-5	B DEFGHI	XREF: H(1820).
				J^{*} : 430.4 γ E2 to 4 ⁺ , 986.0 γ E3 from 9 ⁻ ; assigned to the level sequence based on g.s.
1913 2			G	
2024 2			G	
2045.715 16	4-		BEG	J^{π} : 665.4 γ M1+E2 ($\Delta J=1$) to 3 ⁻ ; direct population in ¹⁴⁰ Eu ε decay ($J\pi=4^{-}$).
2083.432 ^{&} 15	5-		B DEFGHI	J^{π} : 271.7 γ E1 to 6 ⁺ , 702.1 γ E1 to 4 ⁺ .
2155.824 16	2+		B EFGHI	J^{π} : 2155.8 γ E2 to 0 ⁺ , 1470.2 γ from 4 ⁺ . L(d,t)=0 is incompatible with the J=2 ⁺ assignment.
2211 1	0^{+}		I	J^{π} : from L(p,t)=0.
2222.438 ^c 24	6+		B DE g I	XREF: g(2224).
				J [*] : 410.8 γ M1+E2 (Δ J=0) to 6 ⁺ , 820.7 γ E2 from 8 ⁺ . Bandhead of level sequence with Δ I=1

	Type	Author	History	Literature Cutoff Date			
	Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015			
$\frac{1}{\text{Full Evaluation}} = \frac{1}{\text{Kultor}} = \frac{1}{\text{NDS}} \frac{1}{126} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{1000} = \frac{1}{1000}$							
			180m r r				
			Ta Levels				
		Cross Re	ference (XREF) Flags				
·	A ${}^{180}\text{Hf} \beta^{-} \text{dec:}$ B ${}^{176}\text{Yb}({}^{11}\text{B},\alpha 3$ C ${}^{179}\text{Hf}(\alpha,t),({}^{3}\text{H}$ D ${}^{180}\text{Hf}(p,n\gamma),(\alpha$	ay (5.53 h) E $n\gamma$),(⁷ Li,3n\gamma) F Ie,d) G i,2n\gamma) H	180 Hf(238 U,X γ) 180 Ta(γ,γ'): target=9 ⁻ Coulomb excitation 181 Ta(γ,n)	I 181 Ta(p,d) isomer J 181 Ta(d,t)			
$\frac{\mathrm{E}(\mathrm{level})^{T}}{2 \circ 2^{d}} \frac{\mathrm{J}^{d}}{1^{t}} \frac{\mathrm{T}}{2^{t}}$	$\Gamma_{1/2}^{4}$ XREF	T 0 0- 15 2. 0	- 95 2	omments			
$39.54^{a} 5 2^{+}$ $77.2^{o} 12 9^{-} > 7.1$	BCD H ×10 ¹⁵ y ABCDEFG	1.J $\forall \beta = 15 \ 3; \ \% \beta^{-}, \ \% \epsilon^{-}, \ \ \ \% \epsilon^{-}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ε=85.5 used by evaluator from β ⁻ and β ⁻ /ε=0.18 3 (1974) log ft=5.97 to 2 ⁺ and log =L(p,d)=4. d average of 8.152 h 6 (19 e18). Others: 8.00 h 5 (19 , 8.19 h (1962Fo10), 8.11 επ7/2[404]v9/2[624]. band assignment; $π=+$ fr =4.825 11 hted average of 78.0 10 f fference between the ¹⁸¹ Ti 2020/2038), and the neutron h ¹⁸⁰ Ta(>7.1×10 ¹⁵ y)(n,y) 7579 keV 2 from ¹⁸¹ Ta(y) assurements (1980Sh06); 5	$f/\varepsilon=0.15\ 2\ (1962Ga07),\ \beta^-/\varepsilon=0.221\ 14$ HeYW). $ft=5.71\ to\ 0^+\ in\ \varepsilon\ decay\ to\ ^{180}Hf.\ \pi$ 980Ry01), 8.15 h 3 (1999Be65), and 8.18 950Wi67), 8.15 h 2 (1951Br87), 8.15 h 5 h 1 (1963Ra14), and 7.99 h 5 (1968Bo25). om L(d,t)=L(p,d)=4. rom ¹⁸¹ Ta(p,d) (2002We01) and 75.5 14 a neutron separation energy (S(n)=7576.8 h thermal capture-state energy of 7652.3 h) (1981Co17). Other values: 73 keV 2, r,n) (1981Co17); 77 keV 9, from mass 82 keV, from (α ,t) (1983Wa01).			

Туре	Author	History Citation	Literature Cutoff Date 4-Dec-2015
Full Evaluation	N. Nica	NDS 132, 1 (2016)	
$Q(\beta^{-})=-1339 5$; S(n)=8744 4; S(p)=5517.5 3; $Q(\alpha)$)=178.6 8	2012Wa38	
		¹⁵⁷ Tb Levels	

Theory and model calculation of interest: Nilsson level energies (1975Ni03, 1973Wi22, 1990Na14); configurations for bandheads (1972So12, same results are in 1973Ga29 and 1971SoZW, 1985AIZO); parameters for ground-state rotational band (1975Jo01); level energies in rotational bands (1978AI14, 1990Ha37); yrast states (1979KeZV); and E1 transitions (1973Wi02, 1993Ne10).

Assignments to the 1/2[541] band and a 1/2[411] band fragment are not adopted here, but are discussed in the levels from the ¹⁵⁶Gd(³He,d) reaction.

No band parameters are given for 5/2[532] band because it is highly distorted; if A and B are computed, the A value is negative. This distortion is due to mixing with the 7/2[523] band.

Additional information 1.

Cross Reference (XREF) Flags

		A ¹⁵⁷ I P ¹⁵⁴ c	Dy ε decay D 157 Gd(d,2n γ), 157 Gd(p,n γ) Sm(7L i 4n γ) E 158 Tb(n d)
		C ¹⁵⁶ C	$\operatorname{Gd}({}^{3}\operatorname{He},d),{}^{156}\operatorname{Gd}(\alpha,t)$ F ${}^{159}\operatorname{Tb}(p,t)$
$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
3/2+	71 y 7	ABCDEF	 %ε=100 μ=+2.01 2; Q=+1.40 8 J^π: From L=0 for (p,t) on 3/2⁺ target and band assignment from comparison of measured and calculated cross sections for (³He,d) and (α,t) reactions. T_{1/2}: From T_{1/2}(ε_K)=455 y 40 (1983Be42) and ε_K/ε= 0.157 7, corresponding to the adopted Q value of 60.04 30. 1983Be42 deduce T_{1/2}=99 y 10 using ε_K/ε=0.218, corresponding to a Q value of 62.9 7. Others: 150 y 30 (1964Fu03), 160 y 40 (1963Iw04), and 280 y 120 (1964Gr14). 1983Be42 suggest that the latter values need to be corrected for capture to higher (i.e., M, O, etc.) shells, and that the corrected values are 100 y 20 (from 1964Fu03 value) and 220 y 95 (from 1964Gr14 value). μ: from 2011StZZ compilation and based on measurement of 1990Al36 by collinear fast beam laser spectroscopy; other: 2.0 <i>I</i> from electron-paramagnetic-resonance measurement (1968Ea04). Q: from 2011StZZ compilation and based on measurement of 1990Al36 by collinear fast beam laser spectroscopy. RMS charge radius <r<sup>2>^{1/2}=5.0489 fm 1500 (2013An02).</r<sup>
5/2+	0.49 ns 12	ABCDEF	J ^{π} : from M1+E2 γ to 3/2 ⁺ level and band structure. T _{1/2} : from ¹⁵⁷ Dy ε decay (1972Af03); other: < 0.42 ns (Muminov, thesis, Dubna, 1978 as cited in 1997Ad08). 1997Ad08 suggest that the 1972Af03 value is too large.
7/2+		ABCDEF	J ^{π} : From M1+E2 γ to 5/2 ⁺ level, E2 to 3/2 ⁺ , and band structure.
9/2+		ABCDEF	J ^{π} : From band structure and (³ He,d) and (α ,t) data.
5/2-	0.20 ns 4	AB D f	XREF: f(325). J^{π} : From E1 γ 's to $3/2^+$ and $7/2^+$ levels. $T_{1/2}$: The five reported values form two groups each of which is internally consistent, but the groups are inconsistent. The adopted value is from 1967Ma33; and the values that are consistent with it are <0.25 ns (1966Me06) and ≤ 0.23 (1972Af03). The average of the other two values is 0.34 ns 4 from 0.33 ns 4 (1967Ko17) and 0.41 ns 9 (1967Ha12). If the three actual values are averaged,
	$\frac{J^{\pi \ddagger}}{3/2^{+}}$ $5/2^{+}$ $7/2^{+}$ $9/2^{+}$ $5/2^{-}$	$\frac{J^{\pi^{\ddagger}}}{3/2^{+}} \frac{T_{1/2}}{71 \text{ y } 7}$ $5/2^{+} \qquad 0.49 \text{ ns } 12$ $\frac{7/2^{+}}{5/2^{-}} \qquad 0.20 \text{ ns } 4$	$\begin{array}{c} A & 157 I \\ B & 154 S \\ C & 156 C \end{array}$ $\frac{J^{\pi \ddagger}}{3/2^{+}} & \frac{T_{1/2}}{71 \text{ y } 7} & \frac{XREF}{\text{ABCDEF}} \end{array}$ $5/2^{+} & 0.49 \text{ ns } 12 \text{ABCDEF}$ $\frac{7/2^{+}}{9/2^{+}} & \text{ABCDEF}$ $\frac{7/2^{+}}{5/2^{-}} & 0.20 \text{ ns } 4 \text{AB D f} \end{array}$

	History							
	Туре	Author	Citation	Literature Cutoff Date				
	Full Evaluation	Jun Chen, Balraj Singh and John A. Cameron	NDS 112, 2357 (2011)	31-Jul-2011				
$Q(\beta^{-}) = -1.343$	$Q(\beta^{-}) = -1.343 \times 10^{4} \ 19$; $S(n) = 16299 \ 8$; $S(p) = 8649.4 \ 20$; $Q(\alpha) = -5127.1 \ 7 \qquad 2012 \text{ Wa38}$							
Note: Current	evaluation has us	ed the following Q record.						
S(2n)=28586.5	5 8, S(2p)=13579	.2 7 (2011AuZZ). Values in 2003Au03: S(2n)=	28570 5, S(2p)=13579.3 7.					
$Q(\beta^{-}) = -1.343$	$\times 10^4$ 12; S(n)=1	6299 7; $S(p)=8649.4$ 20; $Q(\alpha)=-5127.1$ 7 2	011AuZZ,2003Au03					
Other reaction	s:							
Preparation of	⁴⁴ Ti radioactive	target: 1999La11.						
Additional info	ormation 1.							
$^{12}C(^{32}S,F),(^{32})$	S,X)E=140 MeV:	fission of ⁴⁴ Ti: 1986Pl02 (E=140 MeV), 1979	Os01 (E(c.m.)=20-35 MeV)).				
¹⁶ O(²⁸ Si, ²⁸ Si)	: resonances: 197	9Ba49 (E(c.m.)=30.0-32.7 MeV).						
$^{24}Mg(^{32}S,^{12}C)$	E=140 MeV: fis	sion fragments: 1990Sa14; E=164 MeV: γ-ray	spectroscopy: 2000Th16.					
40 Ca(α, α): res	onances: 1984Ch	15, 1976Fr08. See 40 Ca(α, α) dataset.						
⁴⁰ Ca(¹⁶ O, ¹⁶ O)	: resonances: 198	34Me01 (E=18.67-22.29 MeV).						
⁴⁰ Ca(³² S, ²⁸ Si)	: α -particle transf	fer: 1989Di06 (E=90, 100, 110 MeV).						
$^{44}Ca(\pi^+,\pi^-)$: o	44 Ca(π ⁺ ,π ⁻): double-charge exchange reaction: 1979Da16 (E=290 MeV), 1987Gi04 (E=163,210 MeV), 1987Zu03 (E≈292 MeV),							
1988We02	1988We02 (E=35 MeV), 1990Se11 (E=100-300 MeV), 1990We05 (E=35 MeV), 1991Ba05 (E=50 MeV), 1991Wi03 (E=300-550							
MeV), 199	2Le16 (E=25-65	MeV), 1993Wa02 and 1993Wa30 (E=50 MeV), 1995Si01 (E=32-79 MeV).				
Others: 1962K	101, 1964Li13, 1	964Ri02.		and the second second second second				

See ${}^{24}Mg({}^{28}Si,2\alpha\gamma)$ for possible additional levels at 3417, 2⁻ (2336 γ); 7454, 8⁺ (3444 γ); 8984, 10⁺ (2416 γ); 9488, 10⁺

 (2920γ) ; 11498, 12⁺ (2515 γ); 11833, 12⁺ (2849 γ); 13782, 14⁻ (3325 γ). These levels are not confirmed in (²⁴Mg, 2 $\alpha\gamma$).

See ${}^{28}\text{Si}({}^{24}\text{Mg},2\alpha\gamma)$ for possible additional level at 11536 (1072 γ , 3498 γ). This level is not confirmed in (${}^{28}\text{Si},2\alpha\gamma$).

See ${}^{40}Ca(\alpha, \alpha)$ for about 35 resonances between 9068 and 12860-keV excitation.

See 1998Ya21 and 1998Mi33 for a very detailed review of α -cluster structure as deduced from ${}^{40}Ca(\alpha,\alpha)$ and $({}^{6}Li,d)$ reactions.

⁴⁴Ti Levels

Cross Reference (XREF) Flags

		A B C D E F G	⁴⁴ V β ⁺ decay (111 ms) ⁴⁴ V β ⁺ decay (150 ms) ⁴⁵ Cr ερ decay (60.9 ms) ²⁴ Mg(²⁸ Si,2αγ) ²⁸ Si(¹⁹ F,2npγ) ²⁸ Si(²⁴ Mg,2αγ) ³² S(¹⁴ N,pnγ), ⁴² Ca(α,2nγ)	H J K L M N	${}^{40}Ca(\alpha,\gamma)$ ${}^{40}Ca(\alpha,\alpha):resonances$ ${}^{40}Ca({}^{6}Li,d)$ ${}^{40}Ca(pol {}^{6}Li,D),({}^{6}Li,pn\gamma)$ ${}^{40}Ca({}^{7}Li,t)$ ${}^{40}Ca({}^{12}C,{}^{8}Be)$ ${}^{40}Ca({}^{13}C,{}^{9}Be),({}^{14}N,{}^{10}B)$	O P Q R S T	⁴⁰ Ca(¹⁶ O, ¹² C) ⁴⁰ Ca(²⁰ Ne, ¹⁶ O) ⁴⁰ Ca(³² S, ²⁸ Si) ⁴² Ca(³ He,n) ⁴² Ca(¹⁶ O, ¹⁴ C) ⁴⁶ Ti(p,t),(p,tγ)
$\frac{\mathrm{E}(\mathrm{level})^{\dagger \ddagger}}{\mathrm{0}^{e}}$	$\frac{\mathrm{J}^{\pi\&}}{\mathrm{O}^+}$	<u>T_{1/2}#@</u> 59.1 y 3	XREF ABCDEFGHIJKLMNOPQRST	% TI T	ε =100 he charge radius $(\langle r^2 \rangle)^{1/2}$ =3. spectroscopy). Evaluated $(\langle r^2 \rangle)^{1/2}$ =3. evaluation by I. Angeli, avail $_{1/2}$: weighted average of 58.9 ratio of 1157 γ from ⁴⁴ Ti dec. weighted average of 8 measu university; earlier value from (1998Ah03)), 59 y 2 (2001Hi implanted ⁴⁴ Ti fragments and peaks), 60.7 y <i>12</i> (1999Wi01 <i>13</i> (1998Go05, specific activit (1998No06, time distribution	Comment $6185 \text{ ff}^{2} >)^{1/2}$; able o $y 3 (2)^{2}$ available o $y 3 (2)^{2}$ available o $y 3 (2)^{2}$ $a_{2} + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	ments fm 38 (2004Ga34,laser =3.611 fm 51 from 2008 n http://cdfe.sinp.msu.ru. 2006Ah10,timing distribution of d 1173 γ from ⁶⁰ Co decay, ts at Argonne and two at Hebrew ame group is 59.0 y 6 pecific activity method by counting unting of individual and sum distribution of γ activity), 60.3 y thod with γ counting), 62 y 2 activity, preliminary value from