Verordnung zur weiteren Modernisierung des Strahlenschutzrechts - Verbändebeteiligung v. 30.05.2018

Verband:	Fa. Thermo	Fisher Scientific Messtechnik GmbH	
Datum:	26.6.2018		

Lfd.	Bezug im Ent-	Text des Bezugs im Ent-	Art der Anmerkung	Anmerkung/Kommentar/Einwendung	Angeregte Änderung
Nr.	wurf	wurf	[redakt./ allg./		
	[Art. /§/Begr.]		rechtl./ inhaltl./zum		
			Erfüllungsaufwand]		
1	Anlage 4 Ta-	Wegfall der "*)" Kenn-	Inhaltlich/Erfül-	Die spezifische Aktivität der natürlich	Bei primordialen Radionukliden die
	belle 1 Spalte	zeichnung für primordiale	lungsaufwand.	vorkommenden Elemente Kalium, Rubi-	bisher mit *) gekennzeichnet waren,
	3	Nuklide außerhalb der		dium, Lanthan und Lutetium ist nun	sollte der massenspezifische Grenz-
		Uran und Thorium-Zerfalls-		zum Teil weit über der massenspezifi-	wert nicht reduziert werden, bzw.
		ketten und Absenkung der		schen Freigrenze (Spalte 3). Dadurch	nicht unter den Wert für das natürlich
		massenspezifischen Frei-		wird für diese natürlichen Elemente die	vorkommende Element gesetzt wer-
		grenzen dieser natürlich		Freigrenze der Aktivität alleine relevant	den. Diese Maßnahme wäre im Sinne
		vorhandenen Nuklide um		für die Einstufung als radioaktiver Stoff,	der Zielstellung der Novellierung des
		den Faktor 10 bis 10000		was die freigrenzenäquivalente Masse	Strahlenschutzgesetzes – Anpassung
				auf ca. 300 kg für Kalium, 10 kg für Rubi-	an den aktuellen wissenschaftlichen
				dium und 20 kg für Lutetium be-	Erkenntnisstand, Schutz vor der schäd-
				schränkt.	lichen Wirkung ionisierender Strah-
					lung. Alternativ bzw. zusätzlich wäre
				In dem jetzigen Entwurf ist z.B. eine	die Wiedereinführung der *) Kenn-
				Freigrenze von 0,1 Bq/g für Lu-176 um	zeichnung primordialer Isotope zu
				einen Faktor 500 unter der natürlichen	prüfen.
				spezifischen Aktivität von Lutetium. Ins-	
				besondere für Lu-176, ist ein massen-	
				spezifischer Grenzwert von 0,1 Bq/g	
				(wie für Pu-239, und sogar 10x niedriger	
				als z.B. für den Neutronenstrahler Cf-	

Lfd. Nr.	Bezug im Ent- wurf [Art. /§/Begr.]	Text des Bezugs im Ent- wurf	Art der Anmerkung [redakt./ allg./ rechtl./ inhaltl./zum Erfüllungsaufwand]	Anmerkung/Kommentar/Einwendung	Angeregte Änderung
				252) radiologisch in keiner Weise nachvollziehbar oder vermittelbar. Im Gegensatz dazu waren die bisherigen massenspezifischen Freigrenzen von 100 Bq/g für K-40 und Lu-176 waren wissenschaftlich aus dem Dosisbegrenzungskonzept begründet (NRPB-R306, 1999). Auswirkung auf den Strahlenschutz: Testadapter aus natürlichem Lutetium (Lu2O3) oder Kalium (KCI) boten bisher eine hervorragende und radiologisch völlig unbedenkliche Möglichkeit empfindliche Strahlenschutzmeßgeräte mit Material unterhalb der massenspezifischen Freigrenze zu überprüfen. Auch wenn natürlich diese Testadapter weiterhin unter der Aktivitätsfreigrenze nach Spalte 2 liegen, ist jedoch zu befürchten, daß manche Anwender/Anwendergruppen in Zukunft auf die regelmäßige, eigene Funktionsüberprüfung ihrer Geräte verzichten werden. Die Absenkung der massenspezifischen Freigrenze wäre hier also sogar kontraproduktiv für den Schutz der Bevölkerung.	
2				10-	
3					

Lfd. Nr.	Bezug im Ent- wurf [Art. /§/Begr.]	Text des Bezugs im Ent- wurf	Art der Anmerkung [redakt./ allg./ rechtl./ inhaltl./zum	Anmerkung/Kommentar/Einwendung	Angeregte Änderung
	[[[[[[[[[[[[[[[[[[[[Erfüllungsaufwand]		
4					
5					
6					
7					
8					
9					
10					